
Stochastic Performance Logic User Manual

Haas František
frantisek.haas@gmail.com

Lacina Martin
lacina.martin@gmail.com

Kotrč Jaroslav
kotrcj@gmail.com

March 20, 2013

Contents

Introduction 1

1 Annotations 3
1.1 Grammar . 4

1.1.1 Formulas . 4
Variables . 4

Simple variables . 4
Sequence variables . 5

Comparison . 5
Lambda expression . 6
Comparison operators . 6

1.1.2 Method aliases . 7
1.1.3 Generator aliases . 9

1.2 Generators . 12
1.2.1 Generator description . 12
1.2.2 Integrated generators . 13

1.3 Practical advices . 14
1.3.1 Writing annotations . 14
1.3.2 Writing generators . 14

2 Command Line Tool 16
2.1 Overview . 16

2.1.1 Requirements . 16
2.1.2 Installation . 16
2.1.3 Compilation from source . 16

2.2 Running the framework . 17
2.2.1 Arguments . 17
2.2.2 Evaluation results . 18

3 Examples 19
3.1 Bundled tests . 19

3.1.1 Test Basic . 19
3.1.2 Test Multiple Projects . 19
3.1.3 Test Integrated Generators . 20

3.2 Testing repositories . 20

4 Working directory 21
4.1 Evaluation . 21

4.1.1 Overall structure . 21
4.1.2 Single evaluation directory . 21

4.2 Measurement . 22
4.3 Temporary . 22
4.4 Recovery . 22

5 XML configuration file 23

i

5.1 File overview . 23
5.2 Main element details . 24

5.2.1 Element <project> . 24
5.2.2 Element <generator> . 26
5.2.3 Element <method> . 26
5.2.4 Element <generator-declaration> . 27
5.2.5 Element <method-declaration> . 28
5.2.6 Element <parameter> . 28

5.3 Example XML file . 28

6 INI configuration file 30
6.1 Access . 30

6.1.1 Private repositories . 30
6.1.2 Secure shell details . 31

6.2 Evaluation . 31
6.2.1 Specifying types of output to generate 32
6.2.2 Statistical evaluation parameters . 32
6.2.3 Graph generation configuration . 33

Basic graph configuration . 33
Specifying generated graph types . 33
Default graph definitions for each measurement: 34
Default graph definitions for each comparison: 34
Setting graphs colors . 34
Default colors for sample series . 35

6.3 Deployment . 35
6.4 Example INI file . 36

7 Case Study 38
7.1 Introduction . 38
7.2 Study structure . 38

7.2.1 Configuration . 38
7.2.2 Source files . 39
7.2.3 Annotation structure . 40
7.2.4 Measured methods . 40
7.2.5 Generators . 41
7.2.6 Running the measurement . 42

7.3 Example results . 43
7.3.1 Detailed look at the measurements 43

Verifier.checkElementName . 44
Verifier.checkCharacterData . 45
Verifier.checkAttributeName . 46
SAXBuilder . 48
DOMBuilder . 50

7.3.2 Successful speed up . 51
7.3.3 Dark side of updates . 53
7.3.4 Unusual measurements . 54

7.4 Contribution . 57

ii

8 SPL Tools Eclipse Plug-in 59
8.1 Installation . 59
8.2 Provided views . 60

8.2.1 SPL Annotation Overview . 60
8.2.2 SPL Execution View . 62
8.2.3 SPL Results Overview . 64

8.3 Provided editors . 64
8.3.1 SPL Configuration Editor . 65

Projects Configuration . 65
Global generators, global methods 67
Parameters . 67

8.3.2 INI Configuration Editor . 67
8.4 How to... 69

8.4.1 Add SPL views to Eclipse perspective 69
8.4.2 Prepare project to use SPL . 69
8.4.3 Configure SPL context for your project 70
8.4.4 Open file with specific editor . 70
8.4.5 Add aliases or formulas to annotation 71
8.4.6 Edit annotation . 72
8.4.7 Configure Plug-in . 73
8.4.8 Run execution from Eclipse . 74
8.4.9 View results of execution . 75

9 SPL Tools Hudson Plug-in 76
9.1 Obtaining the Plug-in binary package . 76
9.2 Installation . 76

9.2.1 Hudson 2.2.1 . 76
9.2.2 Hudson 3.0.0 . 77

9.3 Usage . 77
9.3.1 Configuration . 77
9.3.2 Execution results . 79

9.4 Integration with SPL Tools Eclipse Plug-in 80
9.5 Example configuration for testing repositories 80

9.5.1 Basic job configuration . 80
9.5.2 Basic job execution . 82
9.5.3 Results . 82
9.5.4 Using INI configuration file . 83

10 Known Issues 85
10.1 Git conflicts . 85
10.2 OutOfMemoryError: PermGen space error 85

List of Figures 87

iii

Introduction
Stochastic Performance Logic project is a set of tools for measuring and comparison of
performance of Java code. This project is based on “Capturing Performance Assump-
tions using Stochastic Performance Logic” 1.
The idea behind SPL paper is to reason about functions performance using performance
relations between them. These assumptions are declared in source files in form of Java
annotations. This makes it easier to keep these relations up to date.
It’s possible to compare for example different implementations of an interface on performance
with specific sizes of input data. Examples follows
for i in (1000, 5000, 9000) holds: encrypt(i) < 3*memcpy(i)
for i in (1000, 2000, 3000) holds: bubblesort(i) > quicksort(i)
The interpretation of the examples shows the power of SPL. The first example expresses that
encrypt function is very fast. And the seconds example states that quick sort outperforms
bubble sort.
Performance regression testing is an important but usually overlooked part of most projects’
testing suites. Most notably, in long term projects where functions or modules are regu-
larly updated, improved, more secured or fixed a performance penalty may gradually rise
unnoticed. What more, some updates that should improve performance do actually worsen
the running time. For example changing implementations of heavily used data structures
without thorough testing may slow the code. There are examples of such phenomena in our
case study. See [Dark side of updates on page 53]).
Nevertheless expressing performance relations between functions is not only possible in a
current version of a single project but also across revision history of Git and Subversion
systems or even across history of various projects with different repositories. This allows
comparing performance of libraries with similar interface but much more importantly it
allows regression testing. For example
for i in (..) holds: encrypt_v1(i) >= encrypt_v2(i) >= ... >= encrypt_HEAD(i)
In this case the encrypt function is highly utilized in the core of an application (found out
probably by profiler) and therefore its performance must be supervised and kept in the same
range or improved only.
SPL tools are designed for this task and it’s therefore much smarter and easier to use them
for performance and regression testing than a single purpose code. Tools simplify measuring
of running times, evaluation of measured data and presentation of results. And can therefore
save much time for improving the code rather than testing if anything has been improved or
worsen.
We consider SPL tools as a performance equivalent to JUnit 2. What more, using it
does not bring almost any dependencies to the project. Only a single class file declaring

1 The article “Capturing Performance Assumptions using Stochastic Performance Logic” can be found
on each of the following URLs:
http://dx.doi.org/10.1145/2188286.2188345
http://dl.acm.org/citation.cfm?id=2188345
http://d3s.mff.cuni.cz/publications/

2JUnit web page http://junit.org/

1

http://dx.doi.org/10.1145/2188286.2188345
http://dl.acm.org/citation.cfm?id=2188345
http://d3s.mff.cuni.cz/publications/
http://junit.org/

structure of SPL annotation must be present.
SPL tools are composed of a command line utility the offers complete functionality for
processing annotated projects.
Then there’s an Eclipse plugin that has various features and guides user from creation
of the basic SPL project files onto syntax verifying, configuration guidance, measurement
control and ends with presentation of performance results.
And to complete the functionality there’s a Hudson plugin to evaluate SPL formulas. The
results may be viewed directly from published HTML output or accessed via Eclipse plugin
remotely.

License agreements

Project is distributed under the 3-clause BSD license.
Copyright (c) 2012-2013, František Haas, Martin Lacina, Jaroslav Kotrč
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Neither the name of the author nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

2

1. Annotations
Annotations are used to describe what methods are measured and what is the input for
them. The annotations definition is:
package cz.cuni.mff.spl;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;

/** Main SPL annotation. */
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface SPL {

/** SPL formula declarations. */
String[] formula() default {};
/** Local method aliases declarations. */
String[] methods() default {};
/** Local generator aliases declarations. */
String[] generators() default {};

}
Textbooks often use sorting as examples and this one is not an exception. On the next
example is shown simple annotation:
@SPL(

generators = {
"genInt=SPL:spl.IntegerUniform('10;50')#generate()"

},
methods = {

"libSort=java.util.Arrays#sort(int[])"
},
formula = {

"SELF[genInt](5,10) <= (1, 1.5) libSort[genInt](5,10)"
}

)
public void mySort(int[] arr){

// some logic
}
The meaning of the annotation is that the method mySort run takes at most 1.5 longer
than run of the library method java.util.Arrays#sort(int[]).
This annotation defines one generator alias in field generators, one method alias in field
methods and one formula in field formula. There can be any number of generator and
method aliases and formulas in the fields of the annotation.
Generator alias genInt refers to integrated generator of random integer numbers configured
to return values between 10 and 50. Method alias libSort refers to Java method for sorting

3

integer array. The formula compares method mySort referred as THIS with generator
genInt as input with the library sorting method referred as libSort with the same generator
as input. In one measurement cycle the method will run 5-times (that’s the number of inputs
created by generator) on array with 10 items.
Before comparison the run time of the left side is multiplied by 1 and the run time of the
right side is multiplied by 1.5 so the result should be that left side runs at most 1.5 slower
than right side.

1.1 Grammar

The grammar used for writing annotations is described in this section. It has three key-
words:
THIS

Is alias for the project where annotations are written. Also it is the project for which
is the XML configuration file written.

HEAD
Is alias for the most current revision of the repository where the revision belongs.

SELF
Is alias which refers to the method near which is the annotation written.

THIS at revision HEAD is the only location where framework searches for annotations.
Annotations written elsewhere are ignored.

1.1.1 Formulas

In formulas can be used full method or generator definition or aliases defined in the same
annotation or global aliases defined in XML configuration file which is described further in
section [XML configuration file on page 23]. Formula consists of optional variables declara-
tion followed by one or more comparisons joined by logical operators.

Variables

Variables are used as input for generators or as a part of lambda expression. It is optional
part or the formula and can have only non-negative integer values. For better comprehension
formula part after variable declaration is simplified in this section. There are two kinds of
variables.

Simple variables
for(i{1, 2} j{3, 4}) A[G](i) < B[G](j)
There can be any number of variables and their values. Variable is declared by writing its
name followed by its values in curly brackets {1,2} for variable i and {3,4} for variable j.
The values are separated by comma. The result is that formula is expanded and for every
value is created new formula part linked by logical AND. The variables are combined as a
Cartesian product.

4

This example is expanded to formula:
A[G](1) < B[G](3) &
A[G](1) < B[G](4) &
A[G](2) < B[G](3) &
A[G](2) < B[G](4)

Sequence variables
for((a, b){ (1, 2), (3, 4) }) A[G](a) < B[G](b)
It consist of variables names in parenthesis (a,b) followed by their values in curly brackets
{(1,2), (3,4)}. Each value is written in parenthesis and represents one set of values used
for one measurement. There is defined one sequence variable (a,b) with two sub variables
a and b followed by two values of the variable. The value contains one sub value for every
sub variable.
The example is expanded to formula:
A[G](1) < B[G](2) &
A[G](3) < B[G](4)
Its difference from simple variables is that this variable doesn’t combine its values as a
Cartesian product.
The number of sub variables and number of the sub values must be the same. For exam-
ple
for((a, b){(1, 2, 3)})
is invalid because there are only two sub variables but three sub values in the definition.
Both variable types can be combined and the result is a Cartesian product of the values.
for((a, b) (1, 2), (3, 4) c5,6) A[G](a, c) < B[G](b, c)
This is equivalent to four set of values:

• a=1, b=2, c=5
• a=1, b=2, c=6
• a=3, b=4, c=5
• a=3, b=4, c=6

And the example is expanded to formula:
A[G](1, 5) < B[G](2, 5) &
A[G](1, 6) < B[G](2, 6) &
A[G](3, 5) < B[G](4, 5) &
A[G](3, 6) < B[G](4, 6)

Comparison

After variables declaration there is at least one comparison. Multiple comparisons are com-
bined by conjunction (written as &), disjunction (|) or implication (==> ordered by de-
scending priority. Parenthesis () can be used to enforce different priority.

5

Single comparison consist of two methods each with one generator compared by comparison
operator and optional lambda expression.
SELF[pkg.GenClass1] (i, 3) <= pkg.ClassName#method[pkg.GenClass2]
Method SELF with generator pkg.GenClass1 as its input is compared with method
pkg.ClassName#method with the generator pkg.GenClass2 as its input. The vari-
able i placed in parenthesis () after method on the left side is used as input for generator
pkg.GenClass1 and it must be declared as a variable before formula (in the part for(...))
or as a parameter in the XML configuration file. Also non-negative integer constants (3 in
this example) can be used. There can be any number of variables and constants separated by
comma. On the right side no variables are used so the parenthesis have to be omitted.

Lambda expression

Lambda expression can be used after comparing sign in the comparison. It is written in
parenthesis () and has two parts separated by comma. Each part contains one or more
real number constants, variables defined in for(...) part or parameters defined in XML
configuration file separated by asterisk *. The result value of the lambda part is computed
as a product of all constants, variables and parameters used in the part.
The meaning is that measured times of left side of the comparison are multiplied by the
result value of the left part of the lambda expression and measured times of the right side of
the comparison are multiplied by the result value of the right part of the lambda expression
before the times are compared. For example:
pkg.Sort#quicksort[pkg.IntGen](1000) <=
(1, 0.8*THREADS) pkg.Sort#parallelQui[pkg.IntGen](1000)
It means that before comparison is made measured times of pkg.Sort#quicksort method
with pkg.IntGen generator is multiplied by 1 and measured times of pkg.Sort#parallel-
Qui with pkg.IntGen is multiplied by product of constant 0.8 and the value of THREADS
which has to be defined as a variable or parameter.

Comparison operators

Comparison operators defines relation which should be met between measured times of both
sides of the comparison. There can be used operators lesser (<), lesser or equal (<=), exact
equal (==), greater or equal (>=) and greater (>).
There is also short cut= for equality comparing with default 5% tolerance interval. It means
that execution times of the comparison operands satisfy following relation in the statistical
t-test check for both combinations of comparison operand measured values assigned to time1
and time2 variables:
0.95 ∗ time1 < 1.05 ∗ time2

This equality short cut simply means, that the comparison operands are almost same and
very close to each other.
Two special lambda expressions can be used for this operator to specify how big the tolerance
interval is.

6

First expression type has two parts like the normal lambda expression followed by real
number separated by comma which defines the interval. It looks like this:
pkg.Sort#quicksort[pkg.IntGen](1000)(i, 3) =
(1, 0.8*THREADS, 0.1) pkg.Sort#parallelQui[pkg.IntGen](1000)
There is defined lambda expression which compares left side multiplied by 1 and right side
multiplied by 0.8*THREADS for equality with 10 % tolerance interval.
Second expression type omits parts of the normal lambda expression and consists only from
real number defining the interval. It looks like this:
pkg.Sort#quicksort[pkg.IntGen](1000)(i, 3) =
(0.1) pkg.Sort#parallelQui[pkg.IntGen](1000)
There is defined lambda expression which compares left and right side without any multipli-
cation for equality with 10 % tolerance interval.

1.1.2 Method aliases

Method alias is a single string short cut used to refer to whole method declaration in a
formula. Its definition is:
alias =

project@revision: full.class.Name('parameter')
method (type1 name1, type2 name2, ...)

It means:
alias

Is the name of defined alias. It is used to refer to the method in formulas.
project

Is the name of the project from which came the method. If omitted then THIS project
is used instead.

revision
Is the name of the revision of specified project where the method came from. If omitted
(@ is omitted too) then HEAD revision is used instead. If project and revision name
is omitted then colon : is omitted too and it is the same as
THIS@HEAD:

full.class.Name(’parameter’)
Is the full name of the method class. There are two kinds of declaration:
Name()

Can be used for static or member type and if it is member type then the class
must have constructor without parameters. Parenthesis () are optional and have
no meaning.

Name(’parameter’)
Is used for member method which class have constructor with one string parameter
for which parameter value is used.

method
Is the name of measured method after which method parameter types can be optionally

7

specified. If types are not specified and the method is overloaded then an error is issued
as it is not possible to determine which prarticular method to use.. If types (type1 and
type2 in the example) are specified they are written after method name in parenthesis
separated by commas and they determine the method. After parameter type there can
be optional parameter name (name1 and name2 in the example) but it is not used
by the framework.

This is simple example:
staticMethod =

cz.cuni.mff.spl.IntegerSumCalculator#calculateSumOfIntegers
There is defined alias staticMethod separated by equals sign = from method declaration.
It may refer to method:
package cz.cuni.mff.spl.IntegerSumCalculator;

class IntegerSumCalculator{

// method can have any return type
public static int calculateSumOfIntegers(/* input parameters...*/){

// logic
}

}
The method doesn’t need to be static but then the class must have constructor without
parameters:
package cz.cuni.mff.spl.IntegerSumCalculator;

class IntegerSumCalculator{

public IntegerSumCalculator(){
//logic

}

// method can have any return type
public int calculateSumOfIntegers(/* input parameters...*/){

// logic
}

}
Method name is separated by hash sign # from the class name. If the method is overloaded
then the correct method is chosen by the return type of the generator used as method input
in a formula.
More complex example is:
staticMethod =

THIS@HEAD:
cz.cuni.mff.spl.IntegerSumCalculator()#calculateSumOfIntegers(int i)

Although it looks different its meaning is the same as the definition in previous example.
Project and revision THIS@HEAD: can be omitted, parenthesis after class name Inte-

8

gerSumCalculator() are ignored because no parameter is present and parameter type
specified after method name calculateSumOfIntegers(int i) can be omitted too.
To use method from other project at specific revision it is first needed to configure that
project in XML configuration file. Lets assume that project named examples has revision
named init with the same method as in previous example. Alias for this method is:
staticMethod =

examples@init:
cz.cuni.mff.spl.IntegerSumCalculator#calculateSumOfIntegers

Another examples are described in section [Detailed look at the measurements on page
43].

1.1.3 Generator aliases

Generator alias is a single string short cut used to refer to whole generator declaration in a
formula. Its definition is:
alias =

project@revision: full.class.Name('parameter1')
method ('parameter2')

The first part of the definition is the same as for method alias. The difference is in parameters
and method specification:
full.class.Name(’parameter1’)

Is the full name of the generator class. There are two kinds of declaration:
Name()

It is used when no parameters are needed for constructor of generator class. For
class type of generator it means that the constructor has no parameters. For
method type of generator it means that the method is static or the class instance
is created by constructor without parameters for member method.

Name(’parameter1’)
In this case generator class is created by constructor with one string parameter.
For class type of generator is the created instance used. For method type generator
is used member method of the instance.

method (’parameter2’)
This method specification is used only for method type of generator. Method method
is called to obtain values from generator. parameter2 is optional and is used as input
for method. For class type of generator the last part of alias declaration after hash
is omitted.

9

This is simple example:
intGen = cz.cuni.mff.spl.test.IntegerGenerator('10')#generate()
There is defined alias intGen separated by equals sign= from method generator declaration.
It refers to generator which returns arrays of random integer values. The generator code
is:
package cz.cuni.mff.spl.test;

import java.util.ArrayList;
import java.util.Random;

public class IntegerGenerator {

private int max;

/**
* Create instance and parse argument to get maximum
* of generated integers.
*
* @param arg
* maximum of generated integers
*/
public IntegerGenerator(String arg){

max = Integer.parseInt(arg);
}

/**
* Returns list with one array of Objects.
* In the array is stored one array of variable count
* of random integers.
* The array of Objects is used as input for single method call
* so the method must have one integer array as argument.
*
* @param count
* Size of the array of integers.
* @return
* List with one array of Objects with one array of integers.
*/
public ArrayList<Object[]> generate(int count){

Random rnd = new Random();
ArrayList<Object[]> result = new ArrayList<Object[]>();
int[] arr = new int[count];
for(int idx = 0; idx < count; ++idx){

arr[idx] = rnd.nextInt(max);
}
Object[] obj = new Object[1];
obj[0] = arr;
result.add(obj);

10

return result;
}

}
In the generator constructor is parsed maximum value of generated integers so the measure-
ment using alias intGen will always get values lesser than 10.
The alias usage is:
pkg.Sort#quicksort[intGen](1000) > pkg.Sort#quicksort[intGen](900)
In the comparison is used the same generator but with different integer parameters. The left
side generator will return array of 1000 items and the right side generator will return array
of 900 items but both generators return values lesser than 10.
The generator in the example returns one array of arguments so the method will run only once
in single measurement cycle. To extend it to return variable count of arrays of arguments
this method is added:
/**
* Returns list with variable count of arrays of Objects.
* In the array is stored one array of variable count
* of random integers.
* Every array of Objects is used as input for single method
* call so the method must have one integer array as an argument
* and the method will be called once for every array.
*
* @param arrays
* Number of arrays of Objects generated
* @param count
* Size of the array of integers.
* @return
* List with variable count of arrays of Objects with one
* array of integers.
*/

public ArrayList<Object[]> generate(int arrays, int count){
Random rnd = new Random();
ArrayList<Object[]> result = new ArrayList<Object[]>();
for(int arrIdx = 0; arrIdx < arrays; ++arrIdx){

int[] arr = new int[count];
for(int idx = 0; idx < count; ++idx){

arr[idx] = rnd.nextInt(max);
}
Object[] obj = new Object[1];
obj[0] = arr;
result.add(obj);

}
return result;

}
This method has two integer parameters as its input so the usage is:
pkg.Sort#quicksort[intGen](5, 1000) > pkg.Sort#quicksort[intGen](5, 900)

11

In the comparison is used the same alias but with different number of parameters so the new
method is used as the generator. It will run 5-times for every measurement cycle because 5
arrays of arguments are generated.
Another examples are described in section [Generators on page 41].

1.2 Generators

Generator creates input for methods during measurements.

1.2.1 Generator description

The generator generates data of the following type:
Iterable<Object[]> data;
That said a single call of the generator creates data for multiple calls (Iterable<>) of a
function with possibly multiple arguments (Object[]). The items of the array of arguments
must be of correct types just the way like when the method is called in code. The number of
method calls during single measurement cycle is determined by the number of items in the
data container and number of measurement cycles is determined in the INI configuration
file.
The data created by generator for one method run corresponds to the input of method
java.lang.reflect.Method.invoke(Object obj, Object... args).
Generator input can be one of this:

• without parameters
• one string parameter
• any number of integer parameters
• one string parameter followed by any number of integer parameters

String parameters are written in generator declaration as a string value. If generator alias is
declared then the parameter is part of the alias declaration and is the same in every formula
where the alias is used.
Variable count of integer parameters are written in formula next to the method where gen-
erator is used as input. It is not part of generator declaration so one alias can be used in
formulas with different values of the parameters or even with different count of integer pa-
rameters. As integer parameters can be used integer constants, variables defined in for(...)
part of the formula or parameters defined in XML configuration file.
There are two types of generators:
Class generator

Generator class must implement Iterable<Object[]> itself so it can be used as the
data container. Which constructor is used for class instantiating depends which pa-
rameters are used in generator declaration and its usage in formulas.

Method generator
Generator is method which must return Iterable<Object[]>. It can be static or

12

member method. If member method is used then the instance of method class is
created by constructor without parameters or with single string parameter depending
if parameter is used next to class name in generator declaration. The parameter for
constructor is different from the one in generator input. Whole generator input is
passed to the method defined as generator.
For example if generator alias
gen = cz.cuni.mff.spl.MethodGenerator('paramConstr')

generate('paramMethod')
is used in formula
SELF[gen] = SELF[gen](1,2)
then for the left side will be created instance of cz.cuni.mff.spl.MethodGenerator
with constructor with one string parameter for which paramConstr will be used as its
input. On this instance will be called method generate(String) with paramMethod
as its input. For the right side will be created the class instance the same way but
method generate(String, int, int) will be called on it with (paramMethod, 1, 2)
as its input.

1.2.2 Integrated generators

There are integrated generators that can be used directly within annotations without writing
any code. They generate arrays, arrays of primitives and containers implementing iterable,
list and collection interface.
There’s a class for each value type and distribution. Container type and distribution param-
eters are declared as semicolon separated string values in the constructor. Possible container
values are array, arrayPrimitive, list and default value is primitive array. Number of calls
to generate and number of elements in the container per call is specified in the generator
method.
To declare a generator specify following.
SPL:spl.IntegerUniform('lowerBound;upperBound;argumentType')#generate()
SPL:spl.IntegerPermutation('argumentType')#generate()

SPL:spl.DoubleExponential('lambda;argumentType')#generate()
SPL:spl.DoubleGaussian('mu;sigma;argumentType')#generate()
SPL:spl.DoubleUniform('lowerBound;upperBound;argumentType')#generate()

SPL:spl.LongUniform('lowerBound;upperBound;argumentType')#generate()
To actually use the generator number of calls and element count must be specified. Constants
on each side may differ.
sort1[generator](calls,elements) = sort2[generator](calls,elements)

13

1.3 Practical advices

Writing annotations can be a little tricky on the first sight so there are few advices how to
write and maintain them.

1.3.1 Writing annotations

It is a good idea to use aliases. Global aliases written in the XML configuration file can
be used in every formula of the project. Global generator aliases are useful if there are
only few generators used for measurement. Global method aliases are useful for a reference
method.
Aliases are useful even if they are used only locally. They make the formula shorter and
better readable.
Annotations can be written next to method used for measurement. It gives possibility to
use SELF to refer this method. However that is not necessary and in some cases it might
be better to have the annotation in a separate source.
Annotations placed in a separate file may add some readability because there is not mixed
Java and SPL grammar. It is also possible to have different set of annotations in separate
files and configure the framework to measure just selected part which can be single package
or even single class.
It is useful during debugging new annotations. They can be written in a separate class and
if framework is configured to measure just this class it is faster than if all annotations are
measured.
It is also possible to have different groups of annotations. For example one group is measured
every night and other is measured just once in a week because the measurement takes much
time. To differ this cases it is needed only to change scan patterns in XML configuration
file.
Annotations placed in out of Java source can be placed to different source tree and it gives
possibility to compile business logic without annotations.

1.3.2 Writing generators

Maybe the simplest way of writing own generator is to extend some iterable container for
example ArrayList<Object[]> and in its constructor fill it with arrays of objects that rep-
resents parameters for measured method single call by using this.add(objectArray).
There is simple generator example that can be used for every method that has single integer
parameter:
public class IntGenerator extends java.util.ArrayList<Object[]>{

public IntGenerator(){
java.util.Random rnd = new java.util.Random();
Object[] result = new Object[1];
result[0] = rnd.nextInt();
this.add(result);

}

14

}
This generator is of class type without any parameters. In the constructor it creates just one
array of arguments so the measured method will be called just once in every measurement
cycle and single random integer value will be used as the method input.
For more configurable generator string parameters can be used. It can be parsed in the
generator so almost any information can be passed to the generator. For method type
generator there can be actually used two string parameters. First for constructor of the
method class and second for the method itself.
Also integer parameters are useful. They can be easily used in formula with many values
and the framework will automatically expand them. This way it is easy to write formula for
measuring the same method with many generator configurations.
It is a good practise to store generators in some repository and to use fixed revision for
their declaration. If they are stored in local folder they cannot have revisions thus for
every framework run the formulas that use them are measured again. If generators from
project with repository are used then measurements can be cached and if the same revision
of method and generator is used again in other framework run the cached data can be used.
The measurement won’t run again until some change in revision of method or generator is
made.
However if generators are stored along with the annotations in some kind of Git repository
where hash code of the commit is used to identify revision it is needed to make change in
generators in two commits. First commit changes the generator sources and second commit
have to change the identification of the revision from which generators are used.

15

2. Command Line Tool

2.1 Overview

The SPL Tools Framework can be used as a command line tool, an Eclipse plugin or a Hudson
plugin. The command line interface is the basic way to use the Framework. It allows complete
processing of annotated projects. Starting from obtaining annotated project trough scanning
annotations, code generation, execution to the evaluation and result generation.

2.1.1 Requirements

Requires Java Development Kit 1.7 (JDK7)12 or higher.
Compilation from sources requires Apache Ant 1.83 or higher and Git.
Remote execution machine must have installed Java 7 and SSH server.

2.1.2 Installation

The Framework is distributed as a prepared binary package.
The distribution package can be downloaded from the following URL:
http://sourceforge.net/projects/spl-tools/files/release/spl-latest.zip
However in some cases in the following text we will suppose that the Framework source
repository has been checked out and that some additional files (like simple examples) are
present and accessible.

2.1.3 Compilation from source

To compile the Framework from source code follow these steps:
1. Obtain the source from the repository on following URL

git://git.code.sf.net/p/spl-tools/code
http://git.code.sf.net/p/spl-tools/code

2. Open shell in the directory where the code has been checked out and run4

ant bin-dist
This produces the binaries in the build/dist/ directory.

3. Optional: To check the distribution one may run unit tests with command:
ant test-junit

1Oracle JDK web page http://www.oracle.com/technetwork/java/javase/downloads/index.html
2OpenJDK web page http://openjdk.java.net/
3Apache Ant web page http://ant.apache.org/
4Your main need to specify full path to Apache Ant executable

16

http://sourceforge.net/projects/spl-tools/files/release/spl-latest.zip
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net/
http://ant.apache.org/

Some tests5 will not be performed because they require sensitive credentials which are
not distributed in the public repository.

2.2 Running the framework

The Framework is packaged in the SPL.jar6 file located in the build/dist directory or in
the directory where the prepared package has been extracted.
To run it open shell where the SPL.jar is located and execute
java -jar SPL.jar
There are also prepared shell wrappers for running
spl.bat, spl.sh
If no arguments are specified the usage help description is printed.

2.2.1 Arguments

XML configuration file
This is the most essential argument. It is a path to the XML file specifying the
project configuration. This file describes location of the code which will be scanned
for annotations and how it will be obtained and how it will be build if necessary. It’s
a required argument. See [XML configuration file on page 23] for details.

Working directory
This argument specifies the working directory where persistent and temporary data
(including results itself) are stored. This and all following arguments are optional. If
the argument is omitted the default value is .spl in the current working directory. See
[Working directory on page 21] for details.

INI configuration file
The optional configuration may be stored in this file. For example it may contain access
information to remote machines or repositories or configuration of sampling code. See
[INI configuration file on page 30] for details.

Execution machine ID
The identification of the machine where to perform measuring. If this argument is
omitted the current machine is used for measuring. Current machine may be also
specified by “local” value of the argument. If remote machine is to be used the access
details must be specified in the INI configuration file. See [INI configuration file on
page 30] for details.

Choose interactivity
This argument specifies whether the user want to interact with the application. This
might be for example needed if remote execution is specified and the remote machine
requires password or interactive authentication. Or when credentials are required for
repository access. By default interactivity is disabled. To enable interactivity specify

5Those tests cover Git, SVN and SSH connection to remote machines. Tests are in cz.cuni.mff.spl.deploy-
.build.vcs and cz.cuni.mff.spl.utils.ssh packages.

6SPL.jar file name may include version number

17

value “console” then prompt is processed in the console where the program is running
or “gui” then prompt is handled by a pop up window.

If any optional argument is set all previous arguments must be set also. The order of
arguments is mandatory.

2.2.2 Evaluation results

The results are created inside the Framework working directory in the evaluation directory.
Each run of the program creates its own sub-directory in the evaluation directory. To view
the results simply find and open index.html of the right evaluation. See [Working directory
on page 21] for details about evaluation results location and [Specifying types of output to
generate on page 32] for configuration of the evaluation output.

18

3. Examples
Now that the process of obtaining the Framework binaries and the mean of arguments has
been briefly described let’s see some examples.

3.1 Bundled tests

The main repository contains few examples of projects which are used within unit tests.
Some of these projects may serve well as simple examples and show some basic functionality
of the Framework.
To run following examples open shell and execute:
java -jar <path to SPL.jar> <path to spl.xml of corresponding project>

3.1.1 Test Basic

This is the simplest example bundled. It is located in Framework folder on path /test-
/projects/test-basic/ and contains three classes. Method.java implements two sorting
functions. Generator.java implements a generator which can be used as an input to these
functions. Measurement.java contains an annotation which defines a formula made of
comparison of these sort functions using the generator.
Note following things in the spl.xml:

• The repository tag contains information where to obtain the source code of the
project. In this case the type of the repository is sourceRelative. It means the
location of the source is specified relative to the spl.xml itself in the this directory.

• The build tag contains information how to build the code when it’s obtained. The
specified command ant uses the build.xml file in project folder automatically as build
command is run in project directory.

• The classpaths tag contains information where to locate the classes of built project.
• The scanPatterns tag contains information which packages located on the classpath

should be scanned for annotations.

3.1.2 Test Multiple Projects

This example demonstrates how code from multiple projects (different repositories) can be
combined.
The first project THIS contains the annotations.
It’s important to note that every spl.xml file has to have THIS project specified and that
project has to have revision with alias HEAD. This is the first code (revision) obtained
and is scanned for the annotations which are processed afterwards and the other specified
projects and revisions are accessed as needed.
The second project METHOD contains implementations of sorting functions.

19

The third project GENERATOR contains implementation of a generator which can be
used as an input to these functions.
Note how the annotations have changed in the Measurement.java in THIS project. The
declarations of generators and methods do not reference THIS project anymore but do
reference corresponding projects.

3.1.3 Test Integrated Generators

This example demonstrates the usage of integrated generators. They might make measuring
functions easier because there’s no need to implement own generators. To use the integrated
generators one must reference them from a special built-in project which contains the im-
plementation. For further description of integrated generators see [Integrated generators on
page 13].

3.2 Testing repositories

There are also testing repositories available on the Internet. They can be accessed using
following commands:
git clone git://git.code.sf.net/p/spl-tools/testingrepository1
git clone git://git.code.sf.net/p/spl-tools/testingrepository2
svn checkout svn://svn.code.sf.net/p/spl-tools/testingrepository3/
The third one contain project with SPL annotations and configuration that demonstrates
cross referencing and dependencies across multiple projects.
To test the Framework on those repositories, than just download the XML configuration file
from the following URL:
http://sourceforge.net/p/spl-tools/testingrepository3/20/tree/spl-config.xml?
format=raw
And run the Framework as described in previous section with path to the downloaded XML
file. The framework will obtain all three repositories on its own and will perform the mea-
surement and evaluation for all SPL annotations inside the third testing repository.

20

http://sourceforge.net/p/spl-tools/testingrepository3/20/tree/spl-config.xml?format=raw
http://sourceforge.net/p/spl-tools/testingrepository3/20/tree/spl-config.xml?format=raw

4. Working directory
This chapter describes structure of a directory which serves for storage of measured data,
processed evaluations and also temporary files during the execution of the Framework.
We will refer to this directory as a the working directory.

4.1 Evaluation

All created evaluations are stored in the evaluation directory inside the working directory.
Every evaluation is placed in it’s own directory. Evaluations are not deleted or overwritten
between Framework runs.
This is the directory to look for evaluation results after the Framework has finished the
job.

4.1.1 Overall structure

working_directory/evaluation/run-evaluate-0
working_directory/evaluation/run-evaluate-1
working_directory/evaluation/run-evaluate-2
...

4.1.2 Single evaluation directory

This section describes the content of a single evaluation result directory.
Results output files

HTML, XML and graph PNG files are generated only when their generation is allowed
by Framework configuration.
index.html

The HTML index file of the evaluation with all found annotation locations and
their result summaries.

a-*.html
HTML files with details for annotations.

f-*.html
HTML files with details for formulas.

c-*.html
HTML files with details for comparisons.

m-*.html
HTML files with details for measurements.

spl-result.xml
Evaluation result in its bare form. Can be loaded by SPL Tools Eclipse Plug-in
for interactive examination.

21

g-*.png
Graphs of comparisons and measurements.

spl.log
Output of Framework execution run on Debug level.

Framework support files
Dot prefixed files. These files are generated by the Framework and should not be
modified or removed.

4.2 Measurement

The measurement directory in the working directory is used as a cache for measured data.
When there is a project with a lot of measurements to perform it might be useful to cache
these results. For example if new formulas are added that have references to new measure-
ments and also to old measurements only the new measurements will be performed. The old
measurements can be loaded from cache.
However this is possible only in case a version control system is used in the project (such
as Git or Subversion). Otherwise it’s not possible to determine whether the cache data are
valid or not and the measurement is performed again.
Files in this cache directory might be deleted with a few consequences:

• If Framework is performing execution and has skipped measurement because its mea-
sured values were present in cache and it is deleted prior to evaluation then evaluation
will not have data and not computed comparison results will be present.

• If you use SPL Tools Eclipse Plug-in to inspect evaluation results for evaluation with
already removed measured data then you will no longer be able to generate user defined
graphs.

To sum up, measurement cache should be never accessed while any instance is running. And
the best practice is to purge the cache completely or not at all. Unless some measurements
are precious.

4.3 Temporary

The temporary directory should not be modified while the program is running. It contains
directories where remote repositories are checked out, sampling code is generated and where
execution takes place.

4.4 Recovery

In case of Framework crash the temporary and the evaluation result directory might be (but
does not have to be) removed. Measurement cache should, under normal conditions, stay
consistent.

22

5. XML configuration file
XML configuration file contains configuration of projects, global generators, methods and
parameters. It is part of every project that uses framework.
This file can be easily edited using SPL configuration editor in Eclipse plug-in described in
section [SPL Configuration Editor on page 65].

5.1 File overview

The main element of the file is named info and contains these elements:
projects

Contains project elements with information about project configuration and reposi-
tory including all repository revisions. The project with alias THIS must be always
present. It represents the project which this file belongs and is the only project where
annotations are searched. It doesn’t need to have this file inside project folder. It can
be configured that for measurement one can have only this configuration file on local
system and the rest of the project is stored in repository somewhere else.

generators
Contains any number of generator elements which represents definition of generators
used as input for measured methods. They are objects on which points global generator
alias objects. One generator can be used by any number of aliases.

methods
Contains any number of method elements which represents measured methods. They
are objects on which points global method alias objects. One method can be used by
any number of aliases.

global-generators
Contains any number of generator-declaration objects. They represent globally
defined generator aliases which uses generator element as its generator definition.
These generator aliases can be used in any formula of annotated project.

global-methods
Contains any number of method-declaration objects. They represent globally de-
fined method aliases which uses method element as its method definition. These
method aliases can be used in any formula of annotated project.

parameters
Contains any number of parameter objects which are named real number constants
that can be used as part of lambda expression or as parameter for generator in any
formula of annotated project.

In the info element only projects element must be always present. Other elements are
optional.

23

5.2 Main element details

Elements mentioned in configuration file overview are described here.

5.2.1 Element <project>

Example:
<project pid="id-generators">

<alias>generators</alias>
<build>ant</build>
<classpaths>

<classpath>lib/*.jar</classpath>
<classpath>build/core</classpath>

</classpaths>
<scanPatterns>

<scanPattern>cz.cuni.mff.spl.casestudy.annotations.**</scanPattern>
</scanPatterns>
<repository type="Git" url="git://git.code.sf.net/p/spl-tools/casestudy">

<revisions>
<revision rid="id-head">

<alias>HEAD</alias>
<value>master</value>

</revision>
<revision rid="id-current">

<alias>current</alias>
<value>bcfe6d43107430b2604e2e34b9151742941652e0</value>
<comment>Fixed revision to allow results caching.</comment>

</revision>

<!-- further revisions -->

</revisions>
</repository>

</project>
The project attribute pid identifies the element in the document and has to be unique
across all element identifiers of the document. project contains this elements:
alias

Is the name of the project. Project is referred by it in formulas and it has to be unique
for every project.

classpaths
The element contains any number of classpath elements. They represents the loca-
tions where framework searches classes during measurement building. Wild card * can
be used instead part of file name in the path. For example directory/*.jar means all
files with jar extension in directory folder. Or directory/**.jar means all files with
jar extension in directory folder and all its sub folders.

24

scanPatterns
The element contains any number of scanPattern elements. They represents the
locations where framework searches annotations. It is used only for project THIS, for
other projects it is ignored. Wild card * can be used in the pattern. If pattern is only
* then it scans everything on the class path. Scanning can be restricted to a single
class (pattern is full class name), single package (package.*) or package with all sub
packages (package.**).

repository
Configures project repository. Attribute type defines which repository type is used.
Currently are supported this types:
Git

Git versioning system.
Subversion

Subversion versioning system.
Source

Local source folder.
SourceRelative

Local source folder located relative to XML configuration file
Attribute url defines location of the repository.
Element revisions contains any number of revision but there have to be one named
HEAD which represents the most current revision. That is the revision where anno-
tations are searched if it belongs to the project THIS. If the repository type is source
folder the revisions are ignored.
Each revision has attribute rid which identifies the element in the document and
has to be unique across all element identifiers of the document. revision has these
elements:
alias

The name of the revision. It is used in formulas to refer to the revision. It has to
be unique for every revision of the project and cannot be empty.

value
Identifies the revision in its repository. The format of the value depends on the
repository type. For example it can be label or hash for Git or a revision number
for Subversion.

comment
Is an optional element where revision description can be placed. It has no influence
on the measurement. Its only purpose is to be shown in SPL Configuration editor
when revision is edited.

25

5.2.2 Element <generator>

Example:
<generator gid="id-gen1">

<path>cz.cuni.mff.spl.generators.IntegerGenerator</path>
<parameter>p1</parameter>
<genMethod>

<name>factory</name>
<parameter>p2</parameter>

</genMethod>
<revision rref="id-current"/>

</generator>
The generator attribute gid identifies the element in the document and has to be unique
across all element identifiers of the document. generator contains this elements:
path

Is the full class name of the generator class.
parameter

Is an optional string parameter for constructor of generator class.
genMethod

Is present only for method generator. For class generator this element is omitted. It
is the method used to obtain data for measured method. name is the name of the
method and cannot be empty. parameter is optional string parameter of the method.

revision
Refers to the revision from which come the generator. The attribute rref refers to the
attribute project/repository/revisions/revision/@rid.

5.2.3 Element <method>

Example:
<method mid="id-method1">

<path>cz.cuni.mff.spl.basictests.IntegerSumCalculator</path>
<parameter>foo</parameter>
<name>calculateSumOfIntegers</name>
<parameterTypes>char</parameterTypes>
<parameterTypes>int</parameterTypes>
<revision rref="id-head"/>
<declarated type="WITH_PARAMETERS"/>

</method>
The method attribute mid identifies the element in the document and has to be unique
across all element identifiers of the document. method contains this elements:
path

Is the full class name of the method class.
parameter

Is an optional string parameter for the class constructor.

26

name
Is the name of the method.

parameterTypes
Is the type of the method parameter. There can be any number of them and they are
sorted according to their order in method header.

revision
Element refers to revision from which come the method. The attribute rref refers to
the attribute project/repository/revisions/revision/@rid.

declarated
Determines if method parameter types was declared. It has type attribute which can
be:
WITH_PARAMETERS

Marks methods declared with parameter types. Method is fully determined by
this declaration. If there is no element parameterType then it is assumed that
method has no parameters.

WITHOUT_PARAMETERS
Marks methods declared without parameters. In the case of method overloading
the correct method is chosen by the type of values returned by generator. If
element parameterType is present then it is ignored.

5.2.4 Element <generator-declaration>

Example:
<generator-declaration pdid="id-globalGen" gref="id-gen1">


<alias>globalGen</alias>

</generator-declaration>
The generator-declaration attribute pdid identifies the element in the document and has
to be unique across all element identifiers of the document. The attribute gref refers to the
attribute generators/generator/@gid of the generator used as generator declaration for
this global alias. generator-declaration contains this elements:
image

Is the string that was parsed to create this alias.
alias

Is the non empty name of this generator alias which has to be unique across all generator
aliases. It can be used for referring to this declaration in any formula of the annotated
project.

27

5.2.5 Element <method-declaration>

Example:
<method-declaration pdid="id-foo" mref="id-method1">


<alias>foo</alias>

</method-declaration>
The method-declaration attribute pdid identifies the element in the document and has
to be unique across all element identifiers of the document. The attribute gref refers to
the attribute methods/method/@mid of the method used as method declaration for this
global alias. method-declaration contains this elements:
image

Is the string that was parsed to create this alias.
alias

Is the non empty name of this method alias which has to be unique across all method
aliases. It can be used for referring to this declaration in any formula of the annotated
project.

5.2.6 Element <parameter>

Example:
<parameter>

<name>pi</name>
<value>3.14</value>

</parameter>
parameter contains this elements:
name

Is a non empty name of this parameter which has to be unique across all parameters.
It can be used for referring to this parameter in any formula of the annotated project.

value
Is a non empty real number parameter value. Parameter is substituted by the value
during formula parsing.

5.3 Example XML file

The example below shows XML file content with one project named THIS with Git repos-
itory with two revisions and one example of global generator alias, global method alias and
parameter.

28

<?xml version="1.0" encoding="UTF-8"?>
<info>

<projects>
<project pid="id-this">

<alias>THIS</alias>
<build>ant</build>
<classpaths>

<classpath>build/classes</classpath>
</classpaths>
<scanPatterns>

<scanPattern>cz.cuni.mff.spl.**</scanPattern>
</scanPatterns>
<repository type="Git" url="git://repository.url">

<revisions>
<revision rid="id-thisHead">

<alias>HEAD</alias>
<value>master</value>

</revision>
</revisions>

</repository>
</project>

</projects>

<generators>
<generator gid="id-generatorExample">

<path>cz.cuni.mff.spl.Example</path>
<revision rref="id-thisHead" />

</generator>
</generators>

<methods>
<method mid="id-methodFoo">

<path>cz.cuni.mff.spl.Example</path>
<name>foo</name>
<revision rref="id-thisHead" />
<declarated type="WITHOUT_PARAMETERS" />

</method>
</methods>

<global-generators>
<generator-declaration pdid="id-globalGen1" gref="id-generatorExample">


<alias>gen1</alias>

</generator-declaration>
</global-generators>

<global-methods>
<method-declaration pdid="id-globalMethod1" mref="id-methodFoo">


<alias>method1</alias>

</method-declaration>
</global-methods>

<parameters>
<parameter>

<name>THREADS</name>
<value>4.0</value>

</parameter>
</parameters>

</info>

29

6. INI configuration file
Project can be more finely configured using INI configuration file. The difference between
INI configuration and XML configuration is that the XML configuration is supposed to be a
public configuration common to all users and contrary to that INI configuration is a private
configuration different for every user.
It contains access details to private repositories and machine. There’s evaluator configuration
with graph configuration and statistical settings. It’s also possible to configure sampling
process with Java arguments and time or call limits.
There are different sections in the INI file. Each section has its own set of rules where key-
value pairs are defined. Section is specified using [section-name]. All following key-value
pairs belong to that section.
This file can be easily edited using INI Configuration Editor in Eclipse plug-in described in
section [INI Configuration Editor on page 67].

6.1 Access

This section contains connection details to repositories and remote execution machines.

6.1.1 Private repositories

In the XML project configuration the repository is configured specifying its type (Git, Sub-
version, source folder or other) and URL.
This is suitable for public or local repositories but in case the project’s source is placed in
a private repository that requires authentication more details can be specified in the INI
configuration.
To create a section for Git or Subversion authentication create following declaration [access-
.git.repo1] or [access.subversion.repo1] The last part of the dot separated name
must match the name of the project this configuration belongs to in XML configuration.
For Git and Subversion supported values are the same. The distinction is purely for future
compatibility if another version control system with different needs is added.
username = user1

Username to login with.
keyPath = /home/user1/.ssh/key.rsa

Path to private key for SSH authentication.
trustAll = false

Whether to trust all host keys.
fingerprint = 01:02:03:04...

Fingerprint of remote host public key to trust to.
knownHostsPath = /home/user1/.ssh/knownhosts

Path to file with known hosts. Is used read only.

30

When specifying path to files “~” is not applicable as a home directory alias. It’s is handled
as a standard character.
If password or passphrase is required interactivity arguments must be set as in the remote
execution example.

6.1.2 Secure shell details

To declare an execution machine details with name id1 for later use create following section
[access.machine.id1]. The last part of dot separated name is used for referencing the
machine later. Possible keys for this section are (with example values)
url = u-pl0.ms.mff.cuni.cz

Host name or IP address of the remote machine.
path = spl/execution

The directory where the execution will be performed.
username = user1

Username to login with.
keyPath = /home/user1/.ssh/key.rsa

Path to private key for ssh authentication.
trustAll = false

Whether to trust all host keys.
fingerprint = 01:02:03:04...

Fingerprint of remote host public key to trust to.
knownHostsPath = /home/user1/.ssh/knownhosts

Path to file with known hosts. Is used read only.
To use remote execution following arguments must be passed to Framework.
java -jar SPL.jar spl.xml spl-wd spl.ini id1
Where spl.xml is path to the project configuration, spl-wd is the working directory, spl.ini
is the file with previously described configuration and id1 is the name of the machine to use
for execution. If further details such as password or passphrase is required for authentication
interactivity must be enabled using following argument
java -jar SPL.jar spl.xml spl-wd spl.ini id1 console
Preferred way is to use private keys without passphrase for authentication.

6.2 Evaluation

The evaluation configuration includes configuration options for statistical evaluation, gener-
ating HTML output files, XML evaluation results description file and generated graph types
for comparisons and measurements.
All declaration key-value examples in this section are listed with their default values.

31

6.2.1 Specifying types of output to generate

The INI section [evaluator.output] contains declarations that specify which output types
should be generated. All values are of type boolean where true value can be written as one
of 1, true or yes and false value as one of 0, false or no.
generate-html-output = 1

Enables generation of the HTML result report
generate-xml-output = 1

Enables generation of the XML result file.
generate-graph-output = 1

Enables generation of the graph files for comparisons and measurements. Those files
are added to the HTML report automatically if they are created.

6.2.2 Statistical evaluation parameters

The INI section [evaluator.statistics] contains following values for the statistical eval-
uation:
minimum-sample-count-warning-limit = 10

Defines minimum number of measurement samples. Otherwise, warning would be
displayed.

t-test-limit-p-value = 0.05
Defines limit value for evaluating result of statistical t-test for comparison. Comparison
is satisfied when t-test result p-value is greater than the limit value set here. The value
should be floating point value from interval [0, 1].

default-equality-interval = 0.05
Defines default parameter for the relaxed equality (=) comparison operator.

maximum-standard-deviation-vs-mean-difference-warning-limit = 75.0
Defines limit value for ratio of measurement standard deviation and mean in percent
when warning should be shown in result report.
The warning will be issued, when standard_deviation

mean
× 100 > limit.

maximum-median-vs-mean-difference-warning-limit = 20.0
Defines limit value for ratio of measurement median and mean in percent when warning
should be shown in result report.
The warning will be issued, when median

mean
× 100 ̸∈ [100− limit, 100 + limit].

The warnings issued feature when limit is exceeded is not based on the statistical theory, but
it is based on the observations of the measurement behaviour when big difference in the mean
and standard deviation or median usually indicated problems during the measurement.

32

6.2.3 Graph generation configuration

Basic graph configuration

The INI section [evaluator.graphs] contains the basic configuration options used to gen-
erate graphs. Graphs are generated as Portable Network Graphics (PNG) images.
graph-image-width = 800

The width for generated graph image in pixels.
graph-image-height = 600

The height for generated graph image in pixels.
rscript-command = Rscript

The command to run the Rscript executable for calculating probability density func-
tion of measurement data. Default value Rscript should work on both Windows and
Linux systems with R Project installed.

histogram-minimum-bin-count = 100
Defines minimum number of bins for plotting values in histogram graph types.

histogram-maximum-bin-count = 10000
Defines maximum number of bins for plotting values in histogram graph types.

graph-maximum-normal-density-y-axis-limit = 1.0E-4
This option allows to set maximum Y axis value for probability density graph for
measurement (when normal distribution is plotted together with normal density with
the same mean and standard deviation). The default value is 10−4 (0.0001). Set the
value to 1 to disable this feature.

Specifying generated graph types

The types of graphs which should be generated for measurements are defined in the INI
section [evaluator.graphs.measurement] and graph types for comparisons in the section
[evaluator.graphs.comparison].
The entries in both sections have the same format:

graph<order number> = <graph definition>
The order numbers define the order of graphs during generation and also their order in
the generated HTML report pages. There can be only one graph key with one ordering
number, otherwise there is no guarantee which declaration will be effectively used. The
ordering numbers have to be integers and they may not follow-up (i. e. the sequence 1, 2,
3, 4 has the same effect as the sequence 2, 4, 6, 7). The actual order of declarations in INI
file has no influence on the ordering number. Note that there is no space between graph
and order number.
The graph definition has following syntax:

<graph type>(<sample data clip type> [, <numeric argument>]*)
The graph type is one of following values:
Histogram

Histogram of measured samples.

33

DensityComparison
Probability density comparison graph.

TimeDiagram
Graph describing measured times during the execution.

The measured sample data can be clipped to provide various views on them. The sample
data clip type is one of following values:
None

No data clipping, plot all measured values.
Sigma

Measured samples that are farther from the mean than the sigma (standard deviation)
multiplied with specified multiplier are removed. Number of this removal operation
iterations can be specified as second parameter – specifying higher value can lead to
more stable graphs as the mean and the standard deviation are computed from current
measurement dataset.
The first parameter defines the multiplier for standard deviation of measured data.
The default value is 3 and it is used when the no parameter is specified.
The second parameter defines number of iterations to run the clipping process. The
default value is 1 and it is used when the second parameter is not specified.

Quantile
Measurement samples that are lower than the lower percentile specified as the first
numeric argument or higher than upper percentile specified as the second argument
of measurement sample dataset are removed. Lower and upper percentile arguments
have to be specified as floating point numbers in the interval [0, 1].

Default graph definitions for each measurement:

graph1 = Histogram(None)
graph2 = Histogram(Sigma, 3.0, 1.0)
graph3 = DensityComparison(Sigma, 3.0, 1.0)
graph4 = Histogram(Quantile, 0.1, 99.1)
graph5 = Histogram(Quantile, 0.0, 99.0)
graph6 = Histogram(Quantile, 0.0, 95.0)
graph7 = TimeDiagram(Sigma, 3.0, 1.0)
graph8 = TimeDiagram(Quantile, 1.0, 99.0)

Default graph definitions for each comparison:

graph1 = DensityComparison(Sigma, 3.0, 1.0)
graph2 = Histogram(Quantile, 0.1, 99.9)

Setting graphs colors

The INI section [evaluator.graphs.colors] contains specification of colors used for gen-
erating graphs.

34

text = black
The color for labels.

background = lightgray
The color for background.

background-transparent = 0
The flag indicating if the background should be transparent or not. This flag has no
effect now and is reserved for further usage.

sample<order number> = <color declaration>
Colours for the plotted sample series.

The order number has same meaning as the order number in the section [evalua-
tor.graphs.measurement] described before.
The color declaration is either one of red, orange, yellow, green, cyan, blue, violet, magenta,
white, gray, black or RGB declaration:
rgb(<red component>, <blue component>, <blue component>)
The color component is integer number from interval [0, 255].
For example, the declaration for black color is rgb(0,0,0).

Default colors for sample series

sample1 = red
sample2 = blue
sample3 = green
sample4 = yellow
sample5 = orange
sample6 = cyan
sample7 = magenta

6.3 Deployment

There are more values that might be set that do affect either the measuring process or clean
up process.
These properties are all set with default values listed below. To override them specify
following keys in a section named [deployment]
useSystemShell = true

Sets whether to execute project’s build command in a system shell or not. By default,
on Windows build command is executed in cmd /c environment and on Linux and all
other platforms in /bin/sh -c environment. If different shell is to be used set this
option to false and specify complete command in the project’s configuration.

clearTmpBefore = true
If set true temporary directory is completely cleared when Framework is started.

35

clearTmpAfter = false
If set true temporary directory is completely cleared when Framework has finished the
job.

javaPath = “java”
Using this property a preferred Java binary may be set for usage on execution machine.

samplerArguments = “”
Arguments passed to Java at start of each sampling binary. For example “-server”.

warmupCycles = 1000
How many calls to the measured function should be maximally performed to warm up.

warmupTime = 5
How much time should be maximally spend calling measured function to warm up in
seconds.

measurementCycles = 2000
How many calls to the measured function should be maximally sampled.

measurementTime = 10
How much time should be maximally spend measuring in seconds.

timeout = 300
How much time can the sampling binary run at most in seconds. This option is to
make sure sampling code does not hang somehow. If exceeded sampler gets killed. Set
2-3 times more then warming and measuring time.

6.4 Example INI file

The example below shows INI file contents with the default configuration without any access
details for remote machines or private repositories.
[deployment]
useSystemShell = 1
clearTmpBefore = 1
clearTmpAfter = 0
samplerArguments =
warmupCycles = 1000
warmupTime = 5
measurementCycles = 2000
measurementTime = 10
timeout = 60

[evaluator.output]
generate-html-output = 1
generate-xml-output = 1
generate-graph-output = 1

[evaluator.statistics]
minimum-sample-count-warning-limit = 10
t-test-limit-p-value = 0.05
default-equality-interval = 0.05
maximum-standard-deviation-vs-mean-difference-warning-limit = 75.0
maximum-median-vs-mean-difference-warning-limit = 20.0

36

[evaluator.graphs]
graph-image-width = 800
graph-image-height = 600
rscript-command = Rscript
histogram-minimum-bin-count = 100
histogram-maximum-bin-count = 10000
graph-maximum-normal-density-y-axis-limit = 1.0E-4

[evaluator.graphs.measurement]
graph1 = Histogram(None)
graph2 = Histogram(Sigma, 3.0, 1.0)
graph3 = DensityComparison(Sigma, 3.0, 1.0)
graph4 = Histogram(Quantile, 0.1, 99.1)
graph5 = Histogram(Quantile, 0.0, 99.0)
graph6 = Histogram(Quantile, 0.0, 95.0)
graph7 = TimeDiagram(Sigma, 3.0, 1.0)
graph8 = TimeDiagram(Quantile, 1.0, 99.0)

[evaluator.graphs.comparison]
graph1 = DensityComparison(Sigma, 3.0, 1.0)
graph2 = Histogram(Quantile, 0.1, 99.9)

[evaluator.graphs.colors]
text = black
background = lightgray
background-transparent = 0
sample1 = red
sample2 = blue
sample3 = green
sample4 = yellow
sample5 = orange
sample6 = cyan
sample7 = magenta

37

7. Case Study

7.1 Introduction

This chapter is sum of experiences of usage SPL Tools Framework gained during case study
creation. In the study will be demonstrated usage of the framework on a real world project.
The intention of the study is not only to show usability of the framework but also the
experience of using it from the side of a common user. That will help to develop more user-
friendly application as well as to remove unexpected behaviour of the result software.
XML parsing was chosen to present usefulness of SPL. XML data are widely used so the
parsers have to be fast. Developers should improve its performance and parsers are not based
on some exact algorithm so every line of code can significantly influence the performance.
Otherwise in a project that implements some well known algorithm there may not be much
performance improvements.
It is required that the real world application on which the framework is tested is an open
source project with source code stored in some supported revision control system.
For this reasons was chosen JDOM library1 which purpose is to provide a Java-based solution
for accessing, manipulating, and outputting XML data from Java code.
Its code is stored in Git repository. Initial commit was on 28–5–2000, latest commit (to the
18–2–2013) was on 9–11–2012 so it is more than 12 years old and it is still active.
Project has well commented source code and many revisions with apposite description. An-
other benefit is that the developers made their own performance testing2 on which the study
can be based.
Group of possibly interesting revisions was chosen through the whole life of the project.
Revisions that may affect the performance was chosen and the decision was based on revision
description and brief code exploration.

7.2 Study structure

The study is stored in Git repository3. Source files with annotations and generators are there
along with configuration files needed to run measurement. File paths in the next text are
relative to the directory where the study is checked out.

7.2.1 Configuration

Configuration files are stored in src/spl/ directory. There is spl.xml file where global
generators, projects and its revisions are configured and spl.ini file where measurement
details like warm up and measurement time are specified.

1JDOM web page http://jdom.org/
2JDOM performance testing https://github.com/hunterhacker/jdom/wiki/Verifier-Performance
3Study Git repository git://git.code.sf.net/p/spl-tools/casestudy

38

http://jdom.org/
https://github.com/hunterhacker/jdom/wiki/Verifier-Performance
 git://git.code.sf.net/p/spl-tools/casestudy

In this chapter revision aliases which are defined in spl.xml are used for revision identifica-
tion instead of their hash code.
Configured projects are:
THIS

Contains configuration of the case study project itself.
jdom

This is the annotated JDOM project used for measuring revisions after start revision
which was committed on 2–8–2011. JDOM project changed its classpath and build
command in it so it is needed to configure the same repository as two separate projects.

jdom_init
JDOM project used from its initial commit to the commit from 23–7–2009 before its
configuration changed.

generators
This is the same project as THIS and configured with the same online Git repository
but with other purpose. While THIS project source can be for debugging reason
changed to be local, generators project should stay as Git repository because the
measurements that use generators from the same project and the same revision will
not be measured again until the measured method revision changes. If local source
generators are used then the method will be always measured even when the method
revision is the same.

7.2.2 Source files

Java source codes in src/java/ directory contains four packages:
cz.cuni.mff.spl

It is the package where SPL annotation is defined.
cz.cuni.mff.spl.casestudy.annotations

Classes with annotations are there. Main class is intended for adding new annota-
tions and running the method for testing generators from TestMethods class before
measurement. Annotations that are already measured and runs without errors are
separated to MeasuredAnnotations* classes where * is number from 1 to 4.

cz.cuni.mff.spl.casestudy.generators
Contains generator classes used in measurements. All generators give the same pre-
defined values for each run, no random data are used. They read their values from
resource files and store it in memory so during measurement the program will not ac-
cess the hard disk. This is important because if generator reads some data from disk
during measurement then it greatly affects the result time. The time needed to read
data from disk is inconsiderable and may be much greater than time of running the
measured method itself.

cz.cuni.mff.spl.casestudy.generators.resources
There are placed resource files from which generators read their values. Resource files
were taken from JDOM developers performance testing.

39

7.2.3 Annotation structure

Annotations are written next to blank methods. Every annotation uses just methods from
JDOM projects for measurement so the annotations are separated from measured methods.
It allows writing annotations without changes in the JDOM source code.
In annotations global generator and local method aliases are used.
Next to method where annotation is placed is written Javadoc comment describing what
code part annotation measures, what changes was made and what is the result. Because
this comments don’t propagate into measurement results every method have name combined
from three parts for better orientation in result presentation:
resultDescriptionMeasured
The part meanings are:
result

describes the result of all annotation formulas, can be one of:
satisfy

formula in most cases holds
fail

formula in most cases fails
unstable

formula in many cases holds but even not very big measurement deviation can
cause that formula fails

Description
short description what code change is measured

Measured
what part is measured, mostly it is name of a class

7.2.4 Measured methods

Before annotations were written a couple of methods were chosen to be measured through
the time and their performance is compared to themselves in a number of revisions. The
measured classes are:
Verifier

A utility class to handle well-formedness checks on names, data, and other verification
tasks for JDOM (JavaDoc documentation).
It is used many times during document parsing so there the authors made the greatest
effort to make it as fast as possible. Due to the developers performance testing there are
three static methods that are the entry point for almost all of the Verifier’s activity:
checkAttributeName(String name)

checks if supplied name is legal attribute name
checkElementName(String name)

checks if supplied name is legal element name

40

checkCharacterData(String text)
check if supplied text contains only characters allowed by the XML 1.0 specifica-
tion

ParseFileGenerator generator is used as an input for these methods with different
source file for each method.

SAXBuilder
Builds a JDOM Document using a SAX parser (JavaDoc documentation).
Have only one measured method - build(java.io.InputStream) which is called on
SAXBuilder instance and builds a JDOM Document using a SAX parser. During the
building is used Verifier many times so its measurement usually measures incidence
of Verifier performance change to whole parsing process. XMLReadFileGenerator
with few XML source files is used as an input for this method. The difference between
this and the Verifier’s methods is that the SAXBuilder class instance is needed for
this measurement. Framework itself can recognize that and generates correct code for
measurement.

DOMBuilder
Builds a JDOM Document from a pre-existing DOM org.w3c.dom.Document (JavaDoc
documentation).
Have only one measured method - build(org.w3c.dom.Document domDocument)
which is called on DOMBuilder instance and builds a JDOM Document from a
pre-existing DOM. Accordingly SAXBuilder it also uses Verifier and can be used
for measuring incidence of Verifier performance change to building process. DOM-
generator with few XML source files is used as an input for this method.

7.2.5 Generators

In measurements three generators are used. Every generator use one or more input files.
The set of files paths generator can use is stored in array in generator class. Which file will
be read is specified in the generator constructor. Generators are:
ParseFileGenerator

reads one file of strings separated by space and stores it in array each string as one
array item. It is used for measuring all measured methods in Verifier but for each
method it use different input file. Its alias definition is:
gattributes =
generators@current:
cz.cuni.mff.spl.casestudy.generators.ParseFileGenerator('0')
Where gattributes is alias for the generator followed by generator declaration that
means from project generators at revision current use class cz.cuni.mff.spl.case-
study.generators.ParseFileGenerator which have constructor with one String pa-
rameter and its value is 0. This generator is used for reading file with data for
checkAttributeName(String name) method. To read file for checkCharacter-
Data(String text) method the only change in generator declaration is that used
parameter value is 1 and for checkElementName(String name) method it is 2.

41

XMLReadFileGenerator
reads one or more XML files to the string, converts it to stream and every stream
stores as single item in array. Which file will be read is specified in constructor by
String parameter of the file number (0 to 2) or if constructor without parameters is
used then it reads files from all stored paths. It is used as SAXBuilder input. Its
alias definition is:
gxmlread =
generators@current:
cz.cuni.mff.spl.casestudy.generators.XMLReadFileGenerator()

Where gxmlread is alias for generator that from project generators at revision cur-
rent uses class cz.cuni.mff.spl.casestudy.generators.XMLReadFileGenerator
with constructor with no parameters.

DOMgenerator
Generator that reads one or more XML files, constructs org.w3c.dom.Document
from it and every Document stores as single item in array. Which file will be read is
specified in constructor by String parameter of the file number (0 to 7) or if constructor
without parameters is used then it reads files from all stored paths. It is used asDOM-
Builder input. Its alias definition is almost the same as XMLReadFileGenerator
the only difference is in used class:
gdomgenerator =
generators@current:
cz.cuni.mff.spl.casestudy.generators.DOMgenerator()

Where gdomgenerator is alias for generator that from project generators at re-
vision current uses class cz.cuni.mff.spl.casestudy.generators.DOMgenerator
with constructor with no parameters.

7.2.6 Running the measurement

Because whole case study project is accessible through the Internet the simplest way of
running measurement is to obtain Framework repository and in the directory where the
code has been checked out run
ant case-study
It will download case study configuration files to the build/examples/case-study/ direc-
tory and run the framework with it which will download all necessary repositories itself. As
a working directory will be used build/examples/case-study/spl-wd/ directory.
If framework is present just as JAR library then the measurement can be run by execut-
ing
java -jar <path to SPL.jar> <spl.xml> <path to spl-wd> <spl.ini>
where spl.xml and spl.ini are configuration files which are described in section [Configura-
tion on page 38] and spl-wd is working directory where the measurement will be run.
On some computers running of the study needs command line Git to be present because
library used by framework fails as is described in section [Git conflicts on page 85].

42

The study is configured that each measurement takes five minutes so the overall running
time is about nine hours.
Running the study on Windows operating system isn’t suitable because deviations are quite
big thus the results are inferior. The best results were given when used dedicated Unix
machine.

7.3 Example results

There is number of measurements to inspect in the case study. Annotations for them were
written for interesting revisions which were chosen based on JDOM repository log. If the
revision description look like the change can affect performance then brief code examination
was made. This revision was chosen for measurement if even the change in the code look
like it can influence the performance.
Most of the changes hardly have any outward impact to the performance according to the
measurement results. However there are some updates that really have some performance
gain or on the other hand they should have but the reality was unwilling. Or there are
measurements that just look curious. This kinds of measurements is described in this sec-
tion.
Generator aliases which definition was described in section [Generators on page 41] are used
as input for all following measurements.

7.3.1 Detailed look at the measurements

First lets have detailed look on the measurements examples, how annotations for them are
written and what is their meaning.
On the beginning in 2000 year there was a big change in theVerifier where order of character
checking was changed.

43

Verifier.checkElementName

This update sped up mainly checkElementName one of three measured Verifier’s meth-
ods which runs about 10 % faster which look like good improvement.

Figure 7.1: Verifier.checkElementName improvement, red graph is after update.

For definition of this comparison are used method aliases:
beforeHeuristicCheckElements =
jdom_init@beforeHeuristic:
org.jdom.Verifier#checkElementName(String name)

afterHeuristicCheckElements =
jdom_init@afterHeuristic:
org.jdom.Verifier#checkElementName(String name)
Where first one is alias named beforeHeuristicCheckElements and after equal sign is
method definition. First part of definition is specification of project with alias jdom_init
and its revision with alias beforeHeuristic both are defined in spl.xml configuration file.
In this revision is class org.jdom.Verifier with method checkElementName with one
String parameter. That is the method for which the alias is defined.
The second alias afterHeuristicCheckElements is defined for the same method but in
revision afterHeuristic.

44

When the method aliases are defined the comparison of them is simple:
afterHeuristicCheckElements[gelements] <=
beforeHeuristicCheckElements[gelements]
On each part of comparison is method with its generator. There are used method and
generator aliases but whole method definition can be used instead of alias. Aliases just
makes the comparison more readable. There it means that method for which is defined alias
afterHeuristicCheckElements with generator gelements as its input is compared with
method for which is defined alias beforeHeuristicCheckElements with the same generator
as its input. Both sides of comparison are separated by comparison operator which defines
relation between measured time of left and right side of the comparison. There it means
that the first one measured time is lesser or equals than the second one measured time. In
other words first one should run faster than or equal as the second one.

Verifier.checkCharacterData

On the other hand the checkCharacterData method runs after the change about 10 %
slower.

Figure 7.2: Verifier.checkCharacterData downgrade, red graph is after update.

45

For this comparison are used aliases which are similar to the previous comparison but there
are different names of aliases and the measured method:
beforeHeuristicCharacter =
jdom_init@beforeHeuristic:
org.jdom.Verifier#checkCharacterData(String name)

afterHeuristicCheckCharacter =
jdom_init@afterHeuristic:
org.jdom.Verifier#checkCharacterData(String name)
First one is alias named beforeHeuristicCharacter and after equal sign is method defini-
tion. First part of definition is specification of project with alias jdom_init and its revi-
sion with alias beforeHeuristic. In this revision is class org.jdom.Verifier with method
checkCharacterData with one String parameter. That is the method for which the alias
is defined.
The second alias afterHeuristicCheckCharacter is defined for the same method but in
revision afterHeuristic.
The comparison of defined aliases is:
afterHeuristicCheckCharacter[gcharacters] <=
beforeHeuristicCharacter[gcharacters]
It means that method for which is defined alias afterHeuristicCheckCharacter with
generator for which is defined alias gcharacters as its input is compared with method for
which is defined alias beforeHeuristicCharacter with the same generator as its input.
This comparison operator means that left side of comparison should run faster than or equal
as the right side.

Verifier.checkAttributeName

The third Verifier’s method checkAttributeName wasn’t almost influenced:

46

Figure 7.3: Verifier.checkAttributeName runs almost the same, red graph is after update.

Aliases used in the comparison also are similar to the previous two comparisons and only
differences are names of aliases and measured method:
beforeHeuristicCheckAttributes =
jdom_init@beforeHeuristic:
org.jdom.Verifier#checkAttributeName(String name)

afterHeuristicCheckAttributes =
jdom_init@afterHeuristic:
org.jdom.Verifier#checkAttributeName(String name)
First one is alias named beforeHeuristicCheckAttributes and after equal sign is method
definition. First part of definition is specification of project with alias jdom_init and
its revision with alias beforeHeuristic. In this revision is class org.jdom.Verifier with
method checkAttributeName with one String parameter. That is the method for which
the alias is defined.
The second alias afterHeuristicCheckAttributes is defined for the same method but in
revision afterHeuristic.
The comparison of defined aliases is:
afterHeuristicCheckAttributes[gattributes] <=
beforeHeuristicCheckAttributes[gattributes]

47

It means that method for which is defined alias afterHeuristicCheckAttributes with
generator for which is defined alias gattributes as its input is compared with method for
which is defined alias beforeHeuristicCheckAttributes with the same generator as its
input. This comparison operator means that left side of comparison should run faster than
or equal as the right side.

SAXBuilder

This improvement doesn’t have any significant influence on the whole process creating XML
structure with SAXBuilder which runs almost the same as before the change:

Figure 7.4: SAXBuilder runs almost the same after Verifier improvement, red graph is after
update.

For this comparison are used this aliases:
beforeHeuristicSAX =
jdom_init@beforeHeuristic:
org.jdom.input.SAXBuilder()#build(java.io.InputStream)

afterHeuristicSAX =
jdom_init@afterHeuristic:
org.jdom.input.SAXBuilder()#build(java.io.InputStream)

48

In the first part is created alias beforeHeuristicSAX and its definition. The defini-
tion means from project jdom_init at revision afterHeuristic create instance of class
org.jdom.input.SAXBuilder by constructor without parameters 4 and on this instance
choose method build with one java.io.InputStream as its input parameter. The sec-
ond part defines alias afterHeuristicSAX for the same method but from afterHeuristic
revision.
The comparison of defined aliases is:
afterHeuristicSAX[gxmlread] = beforeHeuristicSAX[gxmlread]
It means that method for which is defined alias afterHeuristicSAX with generator gxml-
read as input is compared with method for which is defined alias beforeHeuristicSAX
with the same generator as input.
This comparison uses short cut = for equality comparing with default 5% tolerance interval.
Details of this type of comparison are described in section [Comparison operators on page
6].

4Parenthesis () after class name are optional in this case. They have meaning only if constructor with
String parameter should be used and then the parameter has to be specified inside them. For static methods
or methods called on an instance created by constructor without parameters it doesn’t matter if they are
present or not. They are written there only for better readability to distinguish that this method is called
on instance.

49

DOMBuilder

Also for creating XML structure using DOMBuilder the results are similar. Improvement
of Verifier doesn’t change its performance:

Figure 7.5: DOMBuilder runs almost the same after Verifier improvement, red graph is after
update.

For which this aliases are used:
beforeHeuristicDOM =
jdom_init@beforeHeuristic:
org.jdom.input.DOMBuilder()#build(org.w3c.dom.Document domDocument)

afterHeuristicDOM =
jdom_init@afterHeuristic:
org.jdom.input.DOMBuilder()#build(org.w3c.dom.Document domDocument)
In the first part is created alias beforeHeuristicDOM and its definition. The definition
means from project jdom_init at revision beforeHeuristic create instance of class org-
.jdom.input.DOMBuilder by constructor without parameters and on this instance choose
method build with one org.w3c.dom.Document as its input parameter. The second
part defines alias afterHeuristicDOM for the same method but from afterHeuristic
revision.

50

The comparison of defined aliases is:
afterHeuristicDOM[gdomgenerator] = beforeHeuristicDOM[gdomgenerator]
It means that method for which is defined alias afterHeuristicDOM with generator gdom-
generator as input is compared with method for which is defined alias beforeHeuristic-
DOM with the same generator as input and the result should be equality with 5% tolerance
interval as in previous SAXBuilder comparison.

7.3.2 Successful speed up

Now have a look at the most successful updates where the JDOM developers improved
performance. In this section speedup means result of

speedup = timeold/timenew

where timeold means median of measured time of running the method from older revision
and timenew is median of measured time of running the method from newer revision.
To see performance of theVerifier in a long term aspect revision called specificationCloser
from 23–7–2000 where it should be in line with specification is compared with current revi-
sion from 8–11–2012. Method checkAttributeName speedup was about 1.5 and method
checkElementName speedup was from 1.6 to 2.2. checkCharacterData method cannot
be measured because it wasn’t present in specificationCloser revision yet.

(a) checkAttributeName speed up, blue
graph is newer.

(b) checkElementName speed up, blue graph
is newer.

Figure 7.6: Verifier speed up between revision specificationCloser and current

Another speed up and maybe the most visible in a short term aspect was made not long
ago after the developers made their own performance testing aimed to improve Verifier per-
formance. In comparison of revision beforeVerifierPerformance on 2–9–2012 and ver-
ifierBitmask on 3–9–2012 checkAttributeName method gain speedup about 1.2 and
checkElementName speedup is 1.25.

51

(a) checkAttributeName speed up, blue
graph is newer.

(b) checkElementName speed up, blue graph
is newer.

Figure 7.7: Verifier speed up between revision specificationCloser and current

Also between revision verifierBitmask and afterVerifierPerformance on 9–9–2012 check-
CharacterData method gain speedup about 1, 25.

Figure 7.8: checkCharacterData speed up, blue graph is from newer revision.

This improvements reflected on the performance of SAXBuilder by speedup about 1.1 and
DOMBuilder gain even further speedup about 2.

52

(a) SAXBuilder speed up, blue graph is
newer.

(b) DOMBuilder speed up, blue graph is
newer.

Figure 7.9: Builders speed up between revision beforeVerifierPerformance and after-
VerifierPerformance

7.3.3 Dark side of updates

Not every update is successful and even if the change should speed up the software the result
can be other. That is the case when SPL Tools Framework can be helpful maybe more than
in a successful case. It is nice when framework is used to check that some change really
speed up the software. However if it detects that some update slow down the program even
when the developers doesn’t expect it can be more practical and developers will know about
it on time.
JDOM developers made such update between revisions beforeFilterList and afterFil-
terList both made on 11–12–2001 when the repository log says: “Now instead of using
the slow and broken PartialList to make lists live, we’ll be using a faster and smarter Fil-
terList mechanism.” But the measurement result of the builders was opposite. SAXBuilder
speedup was about 0.85 and DOMBuilder speedup was 0.75.

(a) SAXBuilder slow down, red graph is
newer.

(b) DOMBuilder slow down, red graph is
newer.

Figure 7.10: Builders slow down between revision beforeFilterList and afterFilterList

53

Another unsuccessful update was made between revision refactored on 2–10–2011 and
lazyList on 11–10–2011 when log says: “The Re-Work includes a major performance up-
grade because FilterList and FilterListIterator are now ’lazy’ in the sense that they only
check as much data as needed to satisfy the user request.” However when builders was mea-
sured it shows that SAXBuilder speedup was about 0.94 and DOMBuilder speedup was
0.95.

(a) SAXBuilder slow down, blue graph is
newer.

(b) DOMBuilder slow down, red graph is
newer.

Figure 7.11: Builders slow down between revision refactored and lazyList

7.3.4 Unusual measurements

Measuring Java programs can be tricky and some results look differently than one can expect.
In this section some of that behaviour is shown.
Usually it is expected that many measurement samples have most values at the bottom of
the time diagram and only couple of samples differs and runs slower which can be caused by
running garbage collector or some other program. But when measuring Verifier’s check-
AttributeName method in revision beforeHeuristic on 19–12–2000 the diagram looks
inverted. It can be caused by repeating the same code so few samples can hit between two
collector runs but major part doesn’t.

54

Figure 7.12: Verifier.checkAttributeName measurement time diagram looks inverted.

Some comparisons have repeating instability. When comparing SAXBuilder in revision
afterTransferring on 22–6–2001 and afterEarlyReturning on 17–8–2001 the measure-
ment in many cases looks similar and their median time is almost the same, their speedup
is around 0.99.

55

Figure 7.13: SAXBuilder runs similar in both revisions, blue graph is newer.

But on other computer with different operating system it repeatedly has speedup about 1.1.
It can be caused by different processor cache size.

56

Figure 7.14: SAXBuilder runs different on other computer, blue graph is newer.

7.4 Contribution

In the case study is demonstrated how the SPL Tools Framework can be used on a real world
application. Many revisions were inspected and for number of methods in different revisions
annotations were written.
Thanks to measurement comparisons is easy to see performance impact of updates between
revisions. Many changes have only small effect but some of them really speed up or on the
other hand slow down the program. The most interesting results are part of the study and
it is explained how annotations were written and what is their meaning.
SPL can be used to check that updates really speed up the software or to detect slow down
even when developers don’t expect it. It can be useful to check performance of the application
from time to time because single change rarely affect performance notably. But every change
can cause just a little slow down and if the downgrades accumulate over time suddenly there
can be a problem.
Last but not least the study helped to test framework and it contributes to overall quality
of the software by finding many bugs, detecting unexpected behaviour and propositioning
improvements that make the program more user friendly.
If SPL eventually becomes part of JDOM project it should improve its performance mon-

57

itoring. Current formulas present in the study may serve as base for additional formulas.
Developers can use study results for regressive examination of code changes and find origins
of performance problems that could possibly arise. They can use it to insure that a perfor-
mance update is really beneficial or to prove that the next release is faster than previous
versions. New formulas based on examples in the study can be simply added for this pur-
pose. Editing existing formulas is usually useful only after their creation if the measurement
results are different than the expectation or if in formula is used master revision that is
different after every commit. Other formulas use already measured data and if they aren’t
considerably rewritten their editing doesn’t bring new value.

58

8. SPL Tools Eclipse Plug-in
The SPL Tools Eclipse Plug-in is integration of the SPL Tools Framework into the Eclipse
IDE1. We will refer to the SPL Tools Eclipse Plug-in just as the Plug-in in this chapter.
The Plug-in allows you to add and edit SPL annotations in your source code, perform SPL
measurement and evaluation from within the Eclipse, browse the SPL results inside Eclipse
and create and edit necessary configuration files for the Framework.

8.1 Installation

Plug-in is installed to Eclipse instance through Eclipse update site which is available on
URL:
http://sourceforge.net/projects/spl-tools/files/eclipseupdatesite/

Follow these steps to install SPL Tools Eclipse Plug-in:
1. Start your Eclipse IDE.
2. Select menu Help and item Install new software...
3. Add Xtext update site (This step is not required for Eclipse Juno) as plug-in requires

Xtext 2.3.0 or newer: http://download.itemis.com/updates/releases/
4. Add or allow default Eclipse update sites for your particular Eclipse release as plug-in

uses Xtext and it requires Eclipse Modelling Tools. Those update sites are usually
named like “Indigo” or “Juno” for your Eclipse release.
• Eclipse Juno (4.2): http://download.eclipse.org/releases/juno/
• Eclipse Indigo (3.7): http://download.eclipse.org/releases/indigo/

5. Add Plug-in update site:
http://sourceforge.net/projects/spl-tools/files/eclipseupdatesite/

6. Select SPL Tools plug-in update site and wait for Eclipse to load available features.
7. Select SPL Tools Eclipse Plug-in Feature in group SPL Tools
8. Finish Plug-in installation using Eclipse wizard.

Note: Eclipse Indigo (3.7) does not handle referenced updates sites integrated into features
yet, so it is necessary to either manually install Xtext or add its update site as described
above.

1Eclipse home page http://www.eclipse.org/

59

http://download.itemis.com/updates/releases/
http://download.eclipse.org/releases/juno/
http://download.eclipse.org/releases/indigo/
http://sourceforge.net/projects/spl-tools/files/eclipseupdatesite/
http://www.eclipse.org/

8.2 Provided views

The Plug-in provides number of views. All of them are described further in this chapter.
Those views are:
SPL Annotation Overview

Displays information about annotations in currently opened Java editor.
SPL Execution View

Allows to run SPL Tools Framework execution directly from Eclipse.
SPL Results Overview

Displays results of SPL evaluation.
To see how to add a view to Eclipse perspective visit [Add SPL views to Eclipse perspective
on page 69].

8.2.1 SPL Annotation Overview

This view shows overview about syntactical correctness of all SPL annotations which are
present in document of currently selected editor.
You can have only one instance of this view per Eclipse perspective.
This view should be visible in every Java perspective, which is created after plug-in instal-
lation or just reset to defaults.

Presentation of annotations

Main part of this view is used for presentation of SPL annotations in currently opened Java
source code editor. Annotations are presented in same order in which they occur in the
document.
Information about annotations is presented in the tree structure where annotations have
sub-nodes with declaration types (generator aliases, method aliases and formulas).
Declaration type nodes have particular declarations as their sub-nodes.
Particular declaration node can have multiple problem nodes associated with it when there
are some errors or warnings during validation.
Validation result of every item in annotation presentation tree structure is marked with one
of following validation result images:

• OK - item is valid
• Warning - item is valid, but the Framework found some warnings
• Error - item is not valid because theFramework found some errors

Warnings and errors are typically issued by SPL Tools Framework annotation parser.
Warnings and errors indication is propagated from declarations to the presented annota-
tion summary information. So when declaration is not valid (it contains an error), then
annotation will be marked with Error image.

60

Available actions

Figure 8.1: SPL Results Overview – available actions

Add SPL annotation declaration to project of active editor
Checks if project of active Java source code editor already contains declaration for
SPL annotation cz.cuni.mff.spl.SPL. If this declaration is not present, then it adds
source file SPL.java in package cz.cuni.mff.spl to source folder for project of active
Java source code editor.
For more details see [Prepare project to use SPL on page 69].

Configure project of active Java source code editor
Allows to set and edit SPL configuration file for project of active Java source code
editor.
Shows project browser with currently selected SPL configuration file for project of
active Java source code editor. If no SPL configuration file is set for Java project, then
default spl-config.xml is created in Java project root. After project configuration file is
set, then SPL Configuration Editor is opened for it.
You can add new SPL configuration file using Eclipse new wizard in Package explorer
- find category SPL Tools and select New SPL Tools XML configuration file.

Select in code
Selects code in editor for currently selected item in annotation presenter tree.

Refresh SPL Annotations
Refreshes shown SPL annotations. Parses document in currently selected Java source
code editor and validates all annotations in it. When no Java source code editor is
selected, then it does nothing.
Annotations are automatically refreshed on background.

Auto expand all SPL annotations
All shown SPL annotation and their information will be automatically expanded when
this action is checked. Default behaviour is to expand only path to errors and warnings
and to expand the annotation fully when just one is present.

61

Collapse all SPL annotations
Collapses all shown SPL annotations. Disables Auto expand all SPL annotations
if it was enabled before.

Open editor for selected annotation
Shows dialog allowing to edit annotation selected in annotation presenter tree. Editor
automatically edits the selected declaration inside annotation overview tree.
You can also double click on declaration you want to edit.

Add generator alias to selected annotation
Shows dialog for adding generator alias to annotation selected in annotation presenter
tree.

Add method alias to selected annotation
Shows dialog for adding method alias to annotation selected in annotation presenter
tree.

Add formula to selected annotation
Shows dialog for adding formula to annotation selected in annotation presenter tree.

Figure 8.2: SPL Annotation Overview

Note: If you place annotation to anonymous inner class, then its name in the annotation
list will be just <anonymous class>.

8.2.2 SPL Execution View

This view allow you to execute the Framework from within Eclipse.
This view has three tabs. First allows you to specify configuration to run execution. Second
serves to observe running execution and third is used to browse execution results.

62

Configuration tab is depicted on following image. For more details on how to run execution
see [Run execution from Eclipse on page 74].

Figure 8.3: SPL Execution View – execution configuration

Tab with execution progress is shown on following image.

Figure 8.4: SPL Execution View – execution in progress

This tab shows console output of the Framework execution and allows you to cancel it or to
show the execution results when the execution is finished. The execution results are then
shown on the third tab which contains the same content as SPL Results Overview which
is described in the next section.

63

8.2.3 SPL Results Overview

This view allows to browse SPL execution results interactively inside Eclipse.

Figure 8.5: SPL Results Overview

For detail on how to use this view see [View results of execution on page 75].

8.3 Provided editors

Plug-in provides following editors:
SPL Configuration Editor

Allows editing the XML configuration file (its format is described in the section [XML
configuration file on page 23]).

INI Configuration Editor
Allows editing the INI configuration file (its format is described in the section [INI
configuration file on page 30]).

Both editors are associated with specific file names only. To see how to open an arbitrary
file with user-specified editor visit [Open file with specific editor on page 70].

64

Editors save changes in the same way as other Eclipse editors by clicking on menu File and
there click on Save item or by pressing the keyboard shortcut CTRL+S. If editor detects
error it indicates it by different color or picture and if the content is saved with error then
the saved file is marked with error sign.

8.3.1 SPL Configuration Editor

The editor should be automatically associated with files that have name spl-config.xml or
spl.xml or have spl-xml extension.
This editor allows editing referenced projects, global generators, global methods and param-
eters. There is one tab for each item on the bottom of the editor.

Projects Configuration

First tab is used for editing projects configuration and is shown on following figure.

Figure 8.6: SPL Configuration Editor – Projects configuration tab

On the left side is the list of all projects. The tool bar with buttons for creating new and

65

deleting existing project is above the list. For editing single project it is needed to choose
it in the list. Project with name THIS is the project with SPL annotations and cannot be
deleted or renamed.
On the right side in the frame named Project is field Name for editing project’s name
which is used in annotations to identify project and cannot be empty and under it are four
expandable items:
Classpaths

There is list of classpaths where framework will search for classes during measurement.
New classpaths can be added and existing ones can be edited or deleted. For editing
new or existing classpath new dialog appears where the classpath value have to be
written and it cannot be empty.

Scan patterns
This part is similar like Classpath part but for editing scan patterns which are used
by scanner when annotations are searched. In this version patterns have sense only for
THIS project. In other project they are ignored. Pattern value cannot be empty.

Build
Its only value is a command used for building this project.

Repository
Project repository including its revisions is configured here.
Type field serves for choosing repository type from predefined values. Another value
can be written here too but it may result to problems when the project will be used
and the Framework will not support specified type of repository.
Next to repository type is button Configure which opens dialog for detailed repos-
itory configuration. Which values can be configured there depends on the repository
type. The correct type must be chosen before opening the repository configuration.
These values are saved into the INI file so it is necessary to chose proper INI configura-
tion file in the pop-up dialog first and after then the new dialog for repository details
configuration appears. This dialog is the same as one tab of INI editor described in
section [INI Configuration Editor on page 67].
In URL field it is specified URL address or local path of the repository. Value cannot
be empty.
In the frame named Revisions on the left side is list of all revisions which can be
measured in this projects and on the right side is configuration of a single revision.
Over the revision list is toolbar for adding and deleting revisions.
Existing revision can be edited after it is chosen in the revision list and its values are
shown in frame named Revision. There is revision name in Name field which is used
in annotations to identify revision and cannot be empty, Value field which identifies
revision in the repository 2 and Comment field with optional revision description.
Revision with name HEAD represents the most current revision in the repository and
cannot be deleted or renamed. Adding revision doesn’t make sense for Source and
SourceRelative kind of repository and revisions are ignored for them.

2Its value depends on repository type. It can be label, hash for Git or number for Subversion.

66

Global generators, global methods

Global generator and method aliases can be configured on those tabs. Their usage and
behaviour is the same as the generator, method and formula tabs of the SPL Annotation
editor. Its usage is described in the section [Edit annotation on page 72].

Parameters

Parameters that can be used in annotation formulas in lambda expressions and as generator
parameters are defined here. The tab is shown on following image.

Figure 8.7: SPL Configuration Editor – parameter tab

There is a table with parameters names and their values. Every parameter can have real
number as its value. Parameters can be added, edited and deleted using tool bar above the
table. A new dialog is shown for editing parameter where name and value can be modified.
Name nor value can be left empty.

8.3.2 INI Configuration Editor

The editor should be automatically associated with files that have name spl-config.ini or
spl.ini or have spl-ini extension.
The editor allows configuring additional details of measurement process and is shown on the
next figure.

67

Figure 8.8: INI Configuration Editor

On the bottom is tab for every section in the configured INI file. The only exception is
repository access configuration which have to be configured using XML configuration editor
because repository type is stored in the XML configuration file and it is needed for creating
right access configuration which is described in the section [Projects Configuration on page
66].
The list of sections is defined and cannot be changed except section that represents machines
where measurements run. These sections have name with prefix access.machine. followed
by the machine name. Machines can be added and removed using the toolbar at the top of
the editor.
Every tab of the editor has table with names and values of section entries. Entries can be
added, edited and deleted using toolbar right above the table. The last button of the toolbar
is Fill and it fills in all default section entries with their default values which are not yet
present in the section.
For editing single entry new dialog appears. It is displayed in the next picture.

Figure 8.9: INI Configuration Editor - single entry dialog

There is field where name of the entry can be chosen from predefined values or user can write
own entry name but that entry doesn’t need to be supported by framework. Name cannot

68

be empty. Under that is label with description of the entry with this name followed by a
field to enter the entry value.

8.4 How to...

This section describes what you can do with the Plug-in in and how to do it. It contains
description on how to add SPL views to the Eclipse, how to prepare your project for usage
of SPL, configure proper SPL context for the project, how to edit SPL annotations using
provided editor dialog, how to run the SPL execution directly from within the Eclipse and
how to browse the SPL evaluation results inside Eclipse.

8.4.1 Add SPL views to Eclipse perspective

Follow these steps to add one of SPL views to currently opened perspective:
1. Select menu Window, item Show view and item Other... at the bottom of shown

sub-menu.
2. Either select group SPL Tools and item SPL Annotation Overview or search for

SPL using integrated filter.
3. Confirm adding view with OK button.

Note that if you have opened standard Eclipse Java perspective, than all SPL related views
are available directly in Show view menu from step 1.
If you want to have multiple views of same type in one Eclipse perspective (applies to SPL
Execution View and to SPL Results Overview), you need to use button in top right
corner of already existing view.

8.4.2 Prepare project to use SPL

To use SPL annotations inside your project, you need to add a new dependency to it to
allow Java compiler to recognize SPL annotations (Java type cz.cuni.mff.spl.SPL). You can
either add entire Frameworkto your class path (but this includes more than 25 MB of data),
or add just one source file to your project with SPL annotation type declaration.
You can use context menu entry Add SPL annotation declaration to project of active
editor of view SPL Annotation Overview to create this file automatically.
SPL annotation file has to have this content (JavaDoc comments can be omitted):
package cz.cuni.mff.spl;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;

/** Main SPL annotation. */
@Target(ElementType.METHOD)

69

@Retention(RetentionPolicy.RUNTIME)
public @interface SPL {

/** SPL formula declarations. */
String[] formula() default {};
/** Method aliases declarations. */
String[] methods() default {};
/** Generator aliases declarations. */
String[] generators() default {};

}
As you can see, this Java type has no methods that can influence your code and it is the
only dependency in your project, that SPL Tools Framework requires and you would not be
able to compile your code without this annotation type declaration.

8.4.3 Configure SPL context for your project

If you want to use generators of parameters for measurement or measure classes in different
projects or revisions, you need to configure SPL context for Plug-in which will be used for
validation of project and revision aliases.
Every project in Eclipse workspace can have SPL XML configuration file set3.
To set SPL XML configuration file for project follow these steps:

1. Open SPL Annotations Overview.
2. Open any Java source file in project you want to configure (preferred file is annotated

file but any Java source file can be opened).
3. Select action Configure project of active Java source code editor in SPL

Annotations Overview.
4. Select configuration file in opened editor. If you open configuration for the first time,

default spl-config.xml with bare configuration will be automatically created in the
project root.

5. Confirm your selection and selected file will be opened in SPL Configuration edi-
tor. If you have target file already opened in different editor you need to open SPL
Configuration Editor manually as Eclipse will not open new editor on same input
file automatically.

8.4.4 Open file with specific editor

To open file with specific editor follow these steps:
1. Click on that file with right mouse button in Package Explorer view.
2. Drop down Open With item and select Other....
3. Choose demanded editor in the appeared dialog and confirm selection.
3Selected SPL XML configuration file is saved to project’s persistent properties.

70

8.4.5 Add aliases or formulas to annotation

You have following options to add aliases and formulas to annotation in Java source code
file:

1. You can fill them manually in Java source code editor with help of SPL Annota-
tion Overview as validator, but it refreshes shown information with delay to prevent
slowing down entire Eclipse.

2. You can use one of actions provided by the SPL Annotation Overview. This is
briefly described in this chapter.

3. You can use SPL Annotation Editor. See next section for details.
If you want to add single declaration to SPL annotation, then you need to select it in the
SPL Annotation Overview and invoke one of actions (either by button, or from context
menu):
Add generator alias to selected annotation

Shows dialog for adding generator alias to annotation selected in annotation presenter
tree.

Add method alias to selected annotation
Shows dialog for adding method alias to annotation selected in annotation presenter
tree.

Add formula to selected annotation
Shows dialog for adding formula to annotation selected in annotation presenter tree.

Following figure illustrates dialog for adding new generator alias.

Figure 8.10: Add generator alias dialog

The definition text area has content assist support which can be shown with key shortcut
Ctrl+Space. If you select item from the list and additional help for it is available, than little
Help with bulb icon appears left of declaration field and you can hover over it to show the
help.

71

When you are finished, you can save new declaration using dialog Save button located
in bottom right. Note that this button is enabled only when none of generator alias editor,
method alias editor and formula editor is in declaration editation state.
If you don’t want to save changes, you can either close dialog with Cancel button located
in bottom right, or close its window directly.

8.4.6 Edit annotation

The are two ways to open SPL Annotation Editor:
• Double click on annotation in the SPL Annotation Overview
• Select annotation in the SPL Annotation Overview and click on action Open

editor for selected annotation .
Annotation editation dialog will be shown. If you have selected any particular declaration
in annotation overview tree, than editation dialog will open its editor for you automati-
cally.
Following figure shows editation dialog with formulas overview. Note that in example figure
below is just one formula and its state is valid.
We will describe usage of this dialog on formula editor as generator and method aliases
editors are used in the same way.

Figure 8.11: SPL Annotation Editor – formulas overview

Overview tool bar buttons:
New button

Switches view to editor for adding new formula.
Edit button

Shows editor for selected formula. Double click on formula in the list has the same
effect.

72

Delete button
Deletes selected formula.

If you add new formula or select formula for editation the following editor will be dis-
played.

Figure 8.12: SPL Annotation Editor – formula editor

Formula editor contains tool bar, text field for edited definition and area for validity infor-
mation presentation.
The definition text area has content assist support which can be shown with key shortcut
Ctrl+Space. If you select item from the list and additional help is available for it, than
Help text with little bulb icon appears left of the declaration field and you can hover over
it to show the help.
Editor tool bar buttons:
Save button

Saves changes in formula and switches view to formula overview.
Cancel button

Does not save any changes in formula and switches view to formula overview.
When you are finished, you can save all changes using dialog Save button located in
bottom right. Note that this button is enabled only when none of generator alias editor,
method alias editor and formula editor is in declaration editation state.
If you don’t want to save changes, you can either close dialog with Cancel button located
in bottom right, or close its window directly.

8.4.7 Configure Plug-in

To open configuration of the Plug-in follow these steps:
1. Click on menu Window and select Preferences.
2. Expand SPL Tools item in the list of preferences.

73

3. There can be configured syntax coloring and templates used in editors of formulas and
generator and method aliases.

8.4.8 Run execution from Eclipse

You can execute Framework directly from Eclipse in SPL Execution View.
You need to specify configuration for the execution. This is done in the Configuration
tab.

Figure 8.13: SPL Execution View – execution configuration

Configuration fields description:
Saved configurations

You can save filled configuration values under some name using the save button or
remove the selected one with the delete button .
When you select name of previously saved configuration, than the values of the other
fields will be set to the saved ones.

Working directory
Path to folder which can be used as working directory for Framework execution.

Project configuration
Path to SPL project configuration XML file (spl-config.xml).

Ini configuration
Path to INI configuration file with additional configuration (such as remote measure-
ment machine access details, see [INI configuration file on page 30] for details). Op-
tional.

Execution machine
Identification of machine where execution is to be done. Access details are obtained
from INI configuration file which has to be set when this option is used. Optional.

Log level
This sets which progress messages should be shown during processing execution. Log
detail level value can be selected from following values NONE, FATAL, ERROR,

74

WARN , INFO, DEBUG, TRACE which are ordered from most brief to most
exhausting verbosity of details provided. Default value is INFO.

Show exceptions
Exceptions thrown during execution will be shown on Execution tab only when this
option is checked. This is useful for debugging the Framework. Default is not checked.

You can start execution with Run button.
Running execution can be stopped with Cancel button.
Results of finished execution can be easily displayed in the Results tab with the Show
results button. Note that this button is enabled only when execution finished and not
when it was cancelled or when some fatal error occurred during execution.

8.4.9 View results of execution

First thing you need to do to view Framework execution results in SPL Results Overview
is to set path to results XML description file (spl-result.xml) to the Path to results text
field.

Figure 8.14: SPL Results Overview – path to results XML file

This file can be either local file or file accessible over HTTP (for example result of Framework
execution on Hudson). Confirm path either by pressing Enter key in path to results text
box or press Refresh button. Previously selected result locations can be selected from
the list which is accessible through down arrow button (path to results are ordered by last
use).
Use Browse button to select local file.
Use Configure button to set graphs shown in comparison or measurement detail tab and
path to Rscript executable which is used to compute probability density functions.
Navigation to more detailed results can be done either with double-click, buttons or context
menu which can be shown on table or tree entry (usually with right mouse click).
Double click on generator or method alias tries to show editor for declaration target (class
or method).
Use generated navigation tabs to navigate to previously shown results (Home, Annotation,
Formula, Comparison, Measurement).
Graphs shown on Comparison and Measurement tab are interactive when raw data for
presented measurements are available (graph is marked with icon). When there are no
raw measurement data available, than graph presenter can show only only a PNG image
generated during evaluation (graph is marked with icon).

75

9. SPL Tools Hudson Plug-in
The SPL Tools Hudson Plug-in is integration of the SPL Tools Framework for the Hud-
son Extensible continuous integration server1. We will refer to SPL Tools Hudson
Plug-in just as Plug-in in this chapter.
At the time of Plug-in development, Hudson latest production version was 2.2.1 and Hudson
3.0.0 was just in Release Candidate phase of life cycle. So plug-in is intended for Hudson
version 2.2.1 and tested with most recent 3.x version of Hudson at the time.
Plug-in allows you to runSPL Tools Framework evaluation on a regular basis for any Hudson
job. Frequency of its execution is defined by the Hudson job configuration (for example on
every commit or once a day).

9.1 Obtaining the Plug-in binary package

The preferred way of obtaining the Plug-in binary package is to download the latest version
from the SPL Tools web site on the following URL:
http://sourceforge.net/projects/spl-tools/files/HudsonPlugin/
If you want to compile the package yourself than please refer to the Stochastic Perfor-
mance Logic Development Documentation which contains full instructions on how to
compile the Plug-in.

9.2 Installation

When you have file spl-tools-hudson-plugin.hpi2 you can install it to an instance of
Hudson.
Plug-in is compatible with Hudson version 2.2.1 and 3.0.0 RC. Installation procedure for
plug-ins in form of standalone file differs a little between those two versions.

9.2.1 Hudson 2.2.1

Login to Hudson as administrator with rights to add new plug-ins.
Go to administration, select item Manage plugins from the list, select tab Advanced.
In section Upload Plugin select file spl-tools-hudson-plugin.hpi and confirm plug-in
upload with button Upload.
After file upload has been finished, Hudson shows tab Updates automatically, but it won’t
show any special message about upload result. The only indication about uploaded plug-
in should be visible on tab Installed, where you should see red message below installed
plug-ins table saying New plugins will take effect once you restart Hudson.

1Hudson web page http://hudson-ci.org/
2Actual name of Plug-in distribution file may also contain version information.

76

http://sourceforge.net/projects/spl-tools/files/HudsonPlugin/
http://hudson-ci.org/

Restart your Hudson instance and check Installed plug-ins, where you should finally see
entry for SPL Tools Hudson Plug-in.

9.2.2 Hudson 3.0.0

Login to Hudson as administrator with rights to add new plug-ins.
Go to administration, select item Manage plugins from the list, select tab Advanced.
Select file spl-tools-hudson-plugin.hpi in section Manual Plugin Installation and
confirm with button Upload.
After file upload has been finished, Hudson shows message about upload result. When mes-
sage says Plugin spl-tools-hudson-plugin.hpi sucessfully uploaded., than everything
is all right.
Plug-in will be available after Hudson instance is restarted (this information is mentioned
in description of section Manual Plugin Installation and also shown right of Advanced
tab after plug-in upload).
Restart your Hudson instance and check Installed plug-ins, where you should finally see
entry for SPL Tools Hudson Plug-in.

9.3 Usage

This section describes the usage of the Plug-in from its configuration to the viewing of the
SPL evaluation results.

9.3.1 Configuration

To use Plug-in for Hudson job you need to add new Build Step with name SPL Tools
Hudson Plug-in to it.
You can add multiple SPL Tools Hudson Plug-in build steps to one Hudson job.

Basic configuration

Basic configuration requires only specification of path to SPL Tools projects configuration
file3 for configured Hudson job.
Specified path is expected to be relative to Hudson job workspace root, but you can also
specify absolute path which points to any file on machine running Hudson.
Note that if specified path does not end with .xml, plug-in will show warning that file does
not seem to be XML file.

3See [XML configuration file on page 23]

77

Advanced configuration

Advanced configuration allows to modify additional details of SPL Tools Framework execu-
tion behaviour. To show advanced configuration of SPL Tools Hudson Plug-in build step
press buttonAdvanced... and available advanced configuration options will be shown.
Advanced configuration allows to set following settings:
INI configuration file

This option allows to specify path to SPL configuration INI file4. Path can be either
relative to Hudson job workspace root, or absolute on machine running Hudson.

Working directory
This option specifies path to SPL Tools Framework working directory 5 which is used to
store measured values, evaluation results and temporary files needed for measurement
(such as referenced projects and generated measurement code). Default value is .spl-
tools (folder .spl-tools inside Hudson job workspace root). Working directory can’t
be Hudson job workspace root itself. You can also specify absolute path (such as
/tmp/hudson/myJobSpl).

Execution machine ID
This option allows to specify ID of execution machine, where measurements will be
executed. Access information for remote machine (host name, port, user name, etc.)
is retrieved from INI file. Default is empty value which means local execution.

Choose log details level
This option allows to specify how many details about SPL Tools execution should
be retrieved form SPL Tools Framework to build log file. Specify exactly one value
fromNONE, FATAL, ERROR, WARN , INFO, DEBUG, TRACE, ordered
from most brief to most exhausting verbosity. Value can be entered in any combination
of lower and upper case letters.

Show exceptions in output
- This option toggles full stack trace for exceptions. This can be useful for finding
various errors which occurred in Framework execution, but usually not needed (as the
output is a lot longer with this option enabled). All stack traces of exceptions can be
found in full debug log.

Hudson URL configuration

Plug-in uses Hudson server URL for navigation to results and providing URL for access from
Eclipse.
If URL is miss-configured, you may not be able to use links generated by Plug-in.
To set URL or check its current value go to administration, select item Configure System
from the list and find section E-mail Notification and find value Hudson URL.

4See [INI configuration file on page 30]
5See [Working directory on page 21]

78

9.3.2 Execution results

SPL Tools Hudson Plug-in archives the Framework execution result to build folder and
provides basic summary for each performed SPL build step you defined for Hudson job.
This summary is located in build status information and it has one of the forms shown on
following figure.

Figure 9.1: Hudson – build results

The first result with SPL logo icon shows summary for failed Framework execution. In
this case the cause of error was missing XML configuration file. There are no more results
available in in this case as Framework did not finish successfully.
The second result shows summary for successful Framework invocation. You can see links
for HTML report, XML file for Eclipse and full execution log. Each of those links is visible
only when target files are available (i.e. link to HTML report is visible only if HTML report
was generated).
If HTML report (which is enabled by default) was generated, you will see link for opening
it in the build side menu as shown on following figure.

79

Figure 9.2: Hudson – build menu

There will be entry for HTML report for all successful SPL build step witch generated
HTML report. This link allows to inspect Framework execution results inside Hudson inter-
face.
When you access results from Eclipse using SPL Tools Eclipse Plug-in, you can view inter-
active graphs as long, as performed measurement files in Plug-in SPL working directory are
available. Plug-in will provide them to SPL Tools Eclipse Plug-in over HTTP communication
protocol.
Links to Framework execution results are also printed to Hudson job build console out-
put.

9.4 Integration with SPL Tools Eclipse Plug-in
The URL for XML report file is available in build summary and printed to the build console
output when it was generated by the Framework execution.
Note that actual URL can be provided in two different forms depending on running Hudson
instance URL configuration (see [Hudson URL configuration on page 78]).
Provided URL for viewing results in Eclipse can be either absolute (i.e. it contains protocol,
server, port and path to Hudson instance dashboard from Hudson configuration), or relative
to Hudson dashboard (when configuration is not set at all).

9.5 Example configuration for testing repositories

This section provides simple tutorial for configuring example Hudson job for usage with SPL
Tools Hudson Plug-in.

9.5.1 Basic job configuration

Follow those steps to create basic job:

80

1. Go to Hudson dashboard and select New Job
2. Enter name SPL Example, select Build a free-style software project and confirm

with OK button.
3. In section Source Code Management select Subversion.
4. Enter following URL to field Repository URL:

svn://svn.code.sf.net/p/spl-tools/testingrepository3/

Figure 9.3: Hudson - Tutorial - Repository URL

5. Now go to section Build and add build step SPL Tools Hudson Plug-in.

Figure 9.4: Hudson tutorial - add build step

6. Default build step configuration will be added which is sufficient for this example -
XML configuration file is named spl-config.xml, working directory can be .spl-tools
in Hudson job workspace root, no additional INI configuration file is used now and we
will run execution locally (those values will be displayed when you press Advanced...
button).

Figure 9.5: Hudson tutorial – default SPL build step

7. Save new Hudson job with Save button on bottom of the page.

81

9.5.2 Basic job execution

To run configured Hudson job, issue Build Now action in job menu.
You can observer progress in Console output page of started build, where you will see
SVN checkout progress and then Plug-in execution.

Figure 9.6: Hudson tutorial – build console output

As you can see in figure above, Framework execution found some errors in one formula. Those
errors are there for demonstrating error reporting. All errors or warnings in annotations are
reported to be quickly reviewed during execution.
You can cancel running Plug-in execution with red cancel button in Hudson UI same way
as for any other Hudson task.

9.5.3 Results

You can view summary on build status page and inspect evaluation HTML report using link
SPL Tools HTML Report in build side menu.
The HTML report is interactive so you can navigate to more detailed results from the
summary page.

82

Figure 9.7: Hudson tutorial – HTML report

HTML report contains two overview summary tables. The first one with overview summary
of the entire execution and the second more detailed one with summaries for packages, classes
and finally methods where SPL annotations with formulas are placed.

9.5.4 Using INI configuration file

You can use INI configuration file6 to affect Framework behaviour.
The repository of this tutorial example contains simple INI file spl-brief.ini with three
configuration options:

• set number warm-up samples to 10
• set number of measured samples to 20
• do not generate graph images as this takes a lot of time

Follow these steps to apply this configuration file:
1. Go to Job configuration.
2. Write value spl-brief.ini to field INI configuration file in SPL Tools Hudson

Plug-in build step configuration.
6See [INI configuration file on page 30]

83

3. Save configuration changes.
Plug-in will pass this INI configuration file to the Framework for all newly started executions.
Note that the warm-up sample count and measured sample count configuration overrides will
not have effect in our example as we have already measured all necessary samples and they
will be used for new measurements only. The only override which will take effect now will
be the one for not generating graph images.

84

10. Known Issues

10.1 Git conflicts

During work on the case study a difficulty with the library that’s used to access Git reposito-
ries has showed up. Check outs to seldom revisions of the JDOM library fail due to unknown
conflicts on cloned and clean repository. However, these conflicts never show up when using
command line Git from main stream. To solve this problem fall back to Git on system path
has been added and when a conflict occurs Framework seamlessly switches to the Git on
system path.

10.2 OutOfMemoryError: PermGen space error

This error is caused, because the running Java Virtual Machine (JVM) did not have enough
memory allocated for permanent generation objects (classes, static variables etc.).
Solution is to increase JVM memory allocated for permanent generation objects. This can
be done through adding JVM parameter -XX:MaxPermSize=256M to the Java executable.
This argument sets maximum permanent generation memory size to 256 MB (which should
be enough for Eclipse or Hudson plug-in, if not then increase the number).
The example command to run the Framework from the command line:
java -XX:MaxPermSize=256M -jar SPL.jar

85

List of Figures
7.1 Verifier.checkElementName improvement, red graph is after update. 44
7.2 Verifier.checkCharacterData downgrade, red graph is after update. 45
7.3 Verifier.checkAttributeName runs almost the same, red graph is after update. 47
7.4 SAXBuilder runs almost the same after Verifier improvement, red graph is

after update. 48
7.5 DOMBuilder runs almost the same after Verifier improvement, red graph is

after update. 50
7.6 Verifier speed up between revision specificationCloser and current 51

a checkAttributeName speed up, blue graph is newer. 51
b checkElementName speed up, blue graph is newer. 51

7.7 Verifier speed up between revision specificationCloser and current 52
a checkAttributeName speed up, blue graph is newer. 52
b checkElementName speed up, blue graph is newer. 52

7.8 checkCharacterData speed up, blue graph is from newer revision. 52
7.9 Builders speed up between revision beforeVerifierPerformance and after-

VerifierPerformance . 53
a SAXBuilder speed up, blue graph is newer. 53
b DOMBuilder speed up, blue graph is newer. 53

7.10 Builders slow down between revision beforeFilterList and afterFilterList 53
a SAXBuilder slow down, red graph is newer. 53
b DOMBuilder slow down, red graph is newer. 53

7.11 Builders slow down between revision refactored and lazyList 54
a SAXBuilder slow down, blue graph is newer. 54
b DOMBuilder slow down, red graph is newer. 54

7.12 Verifier.checkAttributeName measurement time diagram looks inverted. . . . 55
7.13 SAXBuilder runs similar in both revisions, blue graph is newer. 56
7.14 SAXBuilder runs different on other computer, blue graph is newer. 57

8.1 SPL Results Overview – available actions . 61
8.2 SPL Annotation Overview . 62
8.3 SPL Execution View – execution configuration 63
8.4 SPL Execution View – execution in progress 63
8.5 SPL Results Overview . 64
8.6 SPL Configuration Editor – Projects configuration tab 65
8.7 SPL Configuration Editor – parameter tab 67
8.8 INI Configuration Editor . 68
8.9 INI Configuration Editor - single entry dialog 68
8.10 Add generator alias dialog . 71
8.11 SPL Annotation Editor – formulas overview 72
8.12 SPL Annotation Editor – formula editor . 73
8.13 SPL Execution View – execution configuration 74
8.14 SPL Results Overview – path to results XML file 75

9.1 Hudson – build results . 79
9.2 Hudson – build menu . 80
9.3 Hudson - Tutorial - Repository URL . 81

86

9.4 Hudson tutorial - add build step . 81
9.5 Hudson tutorial – default SPL build step . 81
9.6 Hudson tutorial – build console output . 82
9.7 Hudson tutorial – HTML report . 83

87

	Introduction
	Annotations
	Grammar
	Formulas
	Variables
	Simple variables
	Sequence variables

	Comparison
	Lambda expression
	Comparison operators

	Method aliases
	Generator aliases

	Generators
	Generator description
	Integrated generators

	Practical advices
	Writing annotations
	Writing generators

	Command Line Tool
	Overview
	Requirements
	Installation
	Compilation from source

	Running the framework
	Arguments
	Evaluation results

	Examples
	Bundled tests
	Test Basic
	Test Multiple Projects
	Test Integrated Generators

	Testing repositories

	Working directory
	Evaluation
	Overall structure
	Single evaluation directory

	Measurement
	Temporary
	Recovery

	XML configuration file
	File overview
	Main element details
	Element <project>
	Element <generator>
	Element <method>
	Element <generator-declaration>
	Element <method-declaration>
	Element <parameter>

	Example XML file

	INI configuration file
	Access
	Private repositories
	Secure shell details

	Evaluation
	Specifying types of output to generate
	Statistical evaluation parameters
	Graph generation configuration
	Basic graph configuration
	Specifying generated graph types
	Default graph definitions for each measurement:
	Default graph definitions for each comparison:
	Setting graphs colors
	Default colors for sample series

	Deployment
	Example INI file

	Case Study
	Introduction
	Study structure
	Configuration
	Source files
	Annotation structure
	Measured methods
	Generators
	Running the measurement

	Example results
	Detailed look at the measurements
	Verifier.checkElementName
	Verifier.checkCharacterData
	Verifier.checkAttributeName
	SAXBuilder
	DOMBuilder

	Successful speed up
	Dark side of updates
	Unusual measurements

	Contribution

	SPL Tools Eclipse Plug-in
	Installation
	Provided views
	SPL Annotation Overview
	SPL Execution View
	SPL Results Overview

	Provided editors
	SPL Configuration Editor
	Projects Configuration
	Global generators, global methods
	Parameters

	INI Configuration Editor

	How to...
	Add SPL views to Eclipse perspective
	Prepare project to use SPL
	Configure SPL context for your project
	Open file with specific editor
	Add aliases or formulas to annotation
	Edit annotation
	Configure Plug-in
	Run execution from Eclipse
	View results of execution

	SPL Tools Hudson Plug-in
	Obtaining the Plug-in binary package
	Installation
	Hudson 2.2.1
	Hudson 3.0.0

	Usage
	Configuration
	Execution results

	Integration with SPL Tools Eclipse Plug-in
	Example configuration for testing repositories
	Basic job configuration
	Basic job execution
	Results
	Using INI configuration file

	Known Issues
	Git conflicts
	OutOfMemoryError: PermGen space error

	List of Figures

