
GETTING EVERYTHING WRONG WITHOUT DOING ANYTHING RIGHT!
or

The perils of large-scale analysis of GitHub data

Jan Vitek

*with apologies to Mytkowicz, Diwan, Sweeney, and Hauswirth’s “Producing Wrong Data Without Doing Anything Obviously Wrong!” ASPLOS’09

Petr Celeste Emery Olga Jan1

1. introductions

2. motivating question

3. large-scale corpus based analysis

4. reproducible science

A possible agenda for today

Introductions

who am i?

Citizenship:

Birthday:

BS:

MS:

PhD:

1st Position:

Current:

Startups:

Kids:

Dogs:

Research:

CZ, CH, US

66/6/9

U. Geneva 89

U. Victoria 92

U. Geneva 99

Purdue U.

Northeastern U.

2

2

1

PL+SE

My research focus on design and
implementation of programming
abstractions in areas that include
real-time embedded systems,
concurrent and distributed
systems and scalable data
analytics.

I have published in ~120 papers
in Programming Languages,
Virtual Machines, Compilers,
Software Engineering, Realtime
computing, and Bioinformatics.

I enjoy beautiful code that solves
real problems.

Flexible Alias Protection ECOOP 1998

Cites: 426

Flexible alias protection is a conceptual model
of inter-object relationships which limits
the visibility of changes via
aliases, mitigating the
undesirable effects of
aliasing.
Impact: Commercial use in Rust,  
ECOOP test of time award

ways: either an object which is referenced from outside can be added into the
shadow, or a reference from within the shadow can be passed out.

a

size contents

d

i j k

Fig. 1. Unconstrained Aliasing. The hash table a has a shadow composed of represen-
tation objects size and contents, and some argument objects contained in the table, i,
j, and k. Both contents and k are seen from the outside by d. Thus, d is able to change
the state of a’s implementation without going through a.

The breaches of encapsulation caused by aliasing may affect correctness of the
aggregate objects, causing the program to err, or, perhaps even more seriously,
opening security holes in the application. We illustrate these problems with two
examples.

Consider an object implementing a simple hash table (see Figure 2). The hash
table object has two components: an array of table entries and an integer, stored
as variables named contents and size. The hash table object is an aggregate, its
shadow contains the integer, the array, and the table entry objects in the array.
If a reference to the contents array exists from outside the hash table object
(that is, if the array is aliased) the contents of the hash table can be modified
by sending a message directly to the array object, without sending a message to
the hash table object itself.

Aliases to the hash table’s elements can arise in a number of ways. For exam-
ple, if references to the key and item objects are retained outside the hashtable,
the hash table elements will be aliased. Alternatively, a hash table operation
(such as get) can directly return a reference to an object stored in a hash table,
and this will immediately create an alias.

Aliases to the array object making up the hashtable’s internal representation
may also be created. Typically, representation objects are created within the
aggregate object of which they are a part, and so preexisting references from
outside the aggregate are unlikely. An operation upon the aggregate can, how-
ever, return a reference to one of the internal representation objects just as easily

3

The eval that men do ECOOP 2011

Cites: 224
A large-scale study of the use of
eval in JavaScript. We recorded
the behavior of 10,000 web pages.
We provide statistics on the nature
and content of eval.
Impact: Commercial adoption by  
Apple

Table 1. Eval usage statistics.

Data Set JavaScript eval Avg eval Avg eval total eval total eval size total JS size
used use (bytes) calls calls (MB) (MB)

INTERACTIVE 100% 82% 1,210 84 7,078 8.2 204
PAGELOAD 89% 50% 655 34 158,994 99.3 1,319
RANDOM 89% 52% 627 61 384,286 229.6 1,823

C
od

e
si

ze

Interactive PageLoad Random

51
2K

B
1.

5M
B

2.
5M

B
3.

5M
B

●

● ●

Fig. 1. Code size. The distribution of
total size of code loaded during evalu-
ation of each website.

JavaScript code size. As in our previous study, we
found that most web sites have less than 512KB
of JavaScript code, with some significant outliers,
especially in the most popular sites. Fig. 1 dis-
plays the distribution of the total size of the Java-
Script code loaded during execution of each web-
site, including source loaded via eval. When the
same code is loaded multiple times we only took
it into account once. The mean sizes are 973KB
for INTERACTIVE, 187KB for PAGELOAD, and
270KB for RANDOM. The largest website was
yahoo.com with 5.09MB of JavaScript code. The
difference in code size between PAGELOAD and
RANDOM is explained by the fact that a mouse
click (or any other event) may cause additional
code to be loaded.
Number of eval call sites. We observed that the
average number of call sites is small, and interac-
tive behavior is correlated with a greater number
of call sites. Fig. 2 shows the distribution of the
number of direct call sites to the eval function that are reached per session, for sessions
where at least one call to eval was made. User interactions frequently uncovered new
call sites: while the mean number of call sites is only 1.7 in PAGELOAD, the mean of
RANDOM and INTERACTIVE is 4.0 and 13, respectively. The maximum number of call
sites in INTERACTIVE was 77, which is lower than both PAGELOAD and RANDOM
(127 and 1331 call sites, respectively).
Number of calls to eval. Unsurprisingly, user interaction is correlated with the number
of calls to eval, and websites call eval in both phases of script execution. We observed
an average of 38 calls to eval in the INTERACTIVE data set, 28 in PAGELOAD, and 85 in
RANDOM. Fig. 3 gives the distribution of the number of invocations of eval per website.
The largest number of invocations occurs in RANDOM with a whopping 111,535 calls.
Amount of source loaded by eval. The size of source text passed to eval widely varies
depending on what is being evaluated. Fig. 4 shows the distribution of source text size.
Strings range in size from empty strings to large chunks of data or code. While for
INTERACTIVE about two thirds of the strings are less than 64 bytes long, the maxi-
mum observed size was 225KB. The PAGELOAD and RANDOM data sets tell similar
stories, 85% and 80%, respectively, of strings are less than 64 bytes, but they peak at

Integrating Typed and Untyped Code in
a Scripting LanguagePOPL 2010

Cites: 102
Integrate untyped code and typed
code in the same system to
allow a prototype to
smoothly evolve into a robust
program. A novel intermediate
point between dynamic and
static typing.

model opaque as a small change in the code can have a large im-
pact on performance simply because it prevents the compiler from
optimizing an operation in a hotspot. The work on soft typing can
be traced to early work by Cartwright [11] and directly influenced
research on soft Scheme [36] and Lagorio et al.’s Just [2, 23] bring-
ing soft typing to Java.

Gradual typing. The gradual typing approach of Siek and Taha
allows for typed and untyped values to commingle freely [26].
When an untyped value is coerced, or cast, to a typed value, a wrap-

per is inserted to verify that all further interactions through that
particular reference behave according to the target type’s contract.
At the simplest a wrapper is a cast hT (Ri saying, intuitively,
that the value was of type R and must behave as a value of type T .
The number of wrappers is variable and can, in pathological cases,
be substantial [19]. In practice, any program that has more than a
single wrapper for any value is likely to be visibly slower. In the
presence of aliasing and side-effects the wrappers typically can not
be discharged on the spot and have to be kept as long as the value
is live. The impact of this design choice is that any operation on a
value may fail if that value is a dynamic type which does not abide
by the contract imposed by its wrapper. Wrapper have to be manip-
ulated at run-time and compiler optimizations are inhibited as the
compiler has to emit code that assumes the presence of wrappers
everywhere. Some of these problems may be avoided with program
analysis, but there is currently no published work that demonstrates
this. To provide improved debugging support researchers have in-
vestigated the notion of blame control in the context of gradual typ-
ing, [14, 29, 32, 34]. The underlying notion is that concretely typed
parts of a program should not be blamed for run-time type errors.
As an example, let T be a type with a method m and x be a vari-
able of type T. Now, if some object o, that does not understand m, is
stored in T, blame tracking will not blame the call x.m()—which is
correct as x has type T—for throwing a “message not understood”
exception at run-time. Rather, it will identify the place in the code
where o was cast to T. Fine-grained blame control requires that a
reference “remembers” each cast it flows through, perhaps modulo
optimizations on redundant casts. Storing such information in ref-
erences and not in objects is key to achieve traceability, but incurs
additional run-time overhead on top of the run-time type checks.
Evaluating the performance impact of blame tracking and its prac-
tical impact on the ability to debug gradually typed programs has
not yet been investigated. We use the term gradual typing to refer
to a family of approaches that includes hybrid typing [15] and that
have their roots in a contract-based approach of [14, 18].

3. A Type System for Program Evolution

In this paper we propose a type system for a class-based object-
oriented programming language with three kinds of types. Dynamic

types, denoted by the type dyn, represent values that are manipu-
lated with no static checks. Dynamic types offer programmers max-
imal flexibility as any operation is allowed, as long as the target ob-
ject implements the requested method. However, dyn gives little
aid to find bugs, to capture design intents, or to prove properties. At
the other extreme, we depart from previous work on gradual typ-
ing, by offering concrete types. Concrete types behave exactly how
programmers steeped in statically typed languages would expect. A
variable of concrete type C is guaranteed to refer to an instance of C
or one of its subtypes. Concrete types drastically restrict the values
that can be bound to a variable as they do not support the notion
of wrapped values found in other gradual type systems. Concrete
types are intended to facilitate optimizations such as unboxing and
inlining as the compiler can rely on the static type information to
emit efficient code. Finally, as an intermediate step between the
two, we propose like types. Like types combine static and dynamic

checking in a novel way. For any concrete type C, there is a cor-
responding like type, written like C, with an identical interface.
Whenever a programmer uses a variable typed like C, all manipu-
lations of that variable are checked statically against C’s interface,
while, at run-time, all uses of the value bound to the variable are
checked dynamically. Figure 1 shows the relations between types
(dyn will be implicit in the code snippets). Full arrows indicate
traditional subtype relations (so, for instance if B is a subtype of A,
then like B is a subtype of like A), dotted lines indicate implicit
dyn casts, and finally, dashed lines show situations where like
casts are needed.

In this paper, we have chosen a nominal type system, thus sub-
type relation between concrete types must be explicitly declared
by extends clauses. While we believe that our approach applies
equally well to structural types, our choice is motivated by prag-
matic reasons. Using class declarations to generate eponymous
types is a compact and familiar (to most programmers) way to con-
struct a type hierarchy. Moreover, techniques for generating effi-
cient field access and method dispatch code sequences for nominal
languages are well known and supported by most virtual machines.

The first key property of like type annotations is that they are
local. This is both a strength and a limitation. It is a strength
because it enables purely local type checking. Returning to our
example, like types allow us to type the parameter to move thus:

def move(p: like Point) {
x := p.getX(); y := p.getY();
p.hog(); # !Raises a compile time error!

}

Declaring the variable p to be like a Point, makes the compiler
check all operations on that variable against the interface of Point.
Thus, the call to hog would be statically rejected since there is no
such method in Point. The annotation provides the static informa-
tion necessary to enable IDE support commonly found in statically
typed languages (but not in dynamic ones).

The second key property is that like types do not restrict flexi-
bility of the code. Declaring a variable to be like C is a promise
on how that variable is used and not to what value that variable
can be bound to. For the client code, a like typed parameter is sim-
ilar to a dyn. The question of when to test conformance between
a variable’s type and the value it refers to is subtle. One of our
goals was to ensure that the addition of like type annotations would
not break working code. In particular, adding type annotations to
a library class should not cause all of its clients to break. So in-
stead of checking at invocation time, each use of a like typed vari-
able is preceded by a check that the target object has the requested
method. If the check fails, a run-time exception is thrown. Consider

B

like B

A

like A

dyn

<:

<:

<:

D

C

related by (dyn) cast

related by (like) cast
related by subtyping

<:

Figure 1. Type Relations. C and D are unrelated by inheritance.

KafKa: Gradual Typing for Objects
ECOOP 2018 Cites: 12

Most common gradual type systems provide distinct
guarantees, we give a formal framework for
comparing gradual type systems for object-oriented
languages. We present
a formal framework for
comparing gradual
type systems.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:3

cannot be ruled out before execution. In such a gradual type system, untyped code can pass
an ill-typed value to typed code, breaking soundness. The meaning of an “error” for a gradual
type system, therefore, depends on how type specifications are enforced. In other words,
each gradual type system may catch di�erent “errors.” We demonstrate this with a litmus
test consisting of three simple programs capable of distinguishing the four above-mentioned
approaches. The litmus test programs are statically well-typed and “correct” in the sense
that they run to completion without error in an untyped language. However, when executed
under di�erent gradual typing systems, they produce di�erent errors. For intuition, consider
a call, x.m(), where x : C and C has a method m returning a D. In the concrete approach, this
call will succeed. With behavioral, the call will go through, but an error may be reported
if m returns a value of the wrong type. In transient, the call is similarly guaranteed to go
through, but might return the wrong type without reporting an error. Finally, in optional,
the call may get stuck, as x may not have a method named m; and, if it succeeds, there is no
guarantee that type D will be returned.

Surface
language
(gradual)

KafKa
(static)

translations

Concrete
Optional

Transient
Behavioral{ { {

Section 3 Section 5 Section 4

We propose to compare approaches to gradual
typing for objects by translating a gradually typed
surface language to a target language called KafKa.
Our surface language is a gradually typed class-
based object-oriented language similar to Feather-
weight Java. KafKa is a statically typed class-based
object calculus with mutable state. The key di�er-
ence between the two is the sound type system and
casts of KafKa. Where the surface language allows
implicit coercions, KafKa requires explicit casts to convert types. Casts come in two kinds:
structural casts check for subtyping, while behavioral casts monitor that an object behaves as
if it was of some type. Translating from surface to target language involves adding casts, the
location and type of which depends on the gradual type system.

This paper makes the following contributions:

The design of a core calculus for gradual type systems for objects.
Translations of each gradual approach to the core calculus.
A litmus test comprised of three programs to tell apart the gradual type systems.
Supplementary material includes a mechanized proof of soundness of the type system of
the core calculus and its proof-of-concept implementation on .Net.

Our work does not address the question of performance of the translations. Each of the
semantics for gradual typing has intrinsic performance costs; but these can be mitigated by
compiler and run-time optimizations, which we do not perform. KafKa departs from prior
work (e.g. [12] as KafKa is statically typed. By translating to a statically typed core, we can
clearly see where wrapper-induced dynamic errors can occur. Another design choice is the
use of structural subtyping in KafKa. This is motivated by our desire to represent behavioral
and transient approaches that require structural subtyping. We do not foresee di�culties
either switching to a nominal type system or providing an additional nominal subtype cast.

All of our code and proofs are available from:

github.com/BenChung/GradualComparisonArtifact.

ECOOP 2018

Research

Flexible Alias Protection ECOOP 1998

Cites: 402
Aliasing is endemic in object-oriented programming.
Flexible alias protection is a conceptual model of
inter-object relationships which limits
the visibility of changes via aliases,
allowing objects to be aliased but
mitigating the undesirable effects
of aliasing.
Impact: Commercial adoption in  
RustECOOP test of time award.

ways: either an object which is referenced from outside can be added into the
shadow, or a reference from within the shadow can be passed out.

a

size contents

d

i j k

Fig. 1. Unconstrained Aliasing. The hash table a has a shadow composed of represen-
tation objects size and contents, and some argument objects contained in the table, i,
j, and k. Both contents and k are seen from the outside by d. Thus, d is able to change
the state of a’s implementation without going through a.

The breaches of encapsulation caused by aliasing may affect correctness of the
aggregate objects, causing the program to err, or, perhaps even more seriously,
opening security holes in the application. We illustrate these problems with two
examples.

Consider an object implementing a simple hash table (see Figure 2). The hash
table object has two components: an array of table entries and an integer, stored
as variables named contents and size. The hash table object is an aggregate, its
shadow contains the integer, the array, and the table entry objects in the array.
If a reference to the contents array exists from outside the hash table object
(that is, if the array is aliased) the contents of the hash table can be modified
by sending a message directly to the array object, without sending a message to
the hash table object itself.

Aliases to the hash table’s elements can arise in a number of ways. For exam-
ple, if references to the key and item objects are retained outside the hashtable,
the hash table elements will be aliased. Alternatively, a hash table operation
(such as get) can directly return a reference to an object stored in a hash table,
and this will immediately create an alias.

Aliases to the array object making up the hashtable’s internal representation
may also be created. Typically, representation objects are created within the
aggregate object of which they are a part, and so preexisting references from
outside the aggregate are unlikely. An operation upon the aggregate can, how-
ever, return a reference to one of the internal representation objects just as easily

3

The eval that men do ECOOP 2011

Cites: 224
A large-scale study of the use of
eval in JavaScript. We recorded
the behavior of 10,000 web pages.
We provide statistics on the nature
and content of eval.
Impact: Commercial adoption by  
Apple

Table 1. Eval usage statistics.

Data Set JavaScript eval Avg eval Avg eval total eval total eval size total JS size
used use (bytes) calls calls (MB) (MB)

INTERACTIVE 100% 82% 1,210 84 7,078 8.2 204
PAGELOAD 89% 50% 655 34 158,994 99.3 1,319
RANDOM 89% 52% 627 61 384,286 229.6 1,823

C
od

e
si

ze

Interactive PageLoad Random

51
2K

B
1.

5M
B

2.
5M

B
3.

5M
B

●

● ●

Fig. 1. Code size. The distribution of
total size of code loaded during evalu-
ation of each website.

JavaScript code size. As in our previous study, we
found that most web sites have less than 512KB
of JavaScript code, with some significant outliers,
especially in the most popular sites. Fig. 1 dis-
plays the distribution of the total size of the Java-
Script code loaded during execution of each web-
site, including source loaded via eval. When the
same code is loaded multiple times we only took
it into account once. The mean sizes are 973KB
for INTERACTIVE, 187KB for PAGELOAD, and
270KB for RANDOM. The largest website was
yahoo.com with 5.09MB of JavaScript code. The
difference in code size between PAGELOAD and
RANDOM is explained by the fact that a mouse
click (or any other event) may cause additional
code to be loaded.
Number of eval call sites. We observed that the
average number of call sites is small, and interac-
tive behavior is correlated with a greater number
of call sites. Fig. 2 shows the distribution of the
number of direct call sites to the eval function that are reached per session, for sessions
where at least one call to eval was made. User interactions frequently uncovered new
call sites: while the mean number of call sites is only 1.7 in PAGELOAD, the mean of
RANDOM and INTERACTIVE is 4.0 and 13, respectively. The maximum number of call
sites in INTERACTIVE was 77, which is lower than both PAGELOAD and RANDOM
(127 and 1331 call sites, respectively).
Number of calls to eval. Unsurprisingly, user interaction is correlated with the number
of calls to eval, and websites call eval in both phases of script execution. We observed
an average of 38 calls to eval in the INTERACTIVE data set, 28 in PAGELOAD, and 85 in
RANDOM. Fig. 3 gives the distribution of the number of invocations of eval per website.
The largest number of invocations occurs in RANDOM with a whopping 111,535 calls.
Amount of source loaded by eval. The size of source text passed to eval widely varies
depending on what is being evaluated. Fig. 4 shows the distribution of source text size.
Strings range in size from empty strings to large chunks of data or code. While for
INTERACTIVE about two thirds of the strings are less than 64 bytes long, the maxi-
mum observed size was 225KB. The PAGELOAD and RANDOM data sets tell similar
stories, 85% and 80%, respectively, of strings are less than 64 bytes, but they peak at

Integrating Typed and Untyped Code in
a Scripting Language POPL 2010

Cites: 121

Integrate untyped and typed
code in the same system
to allow prototypes to
smoothly evolve into
robust programs.

model opaque as a small change in the code can have a large im-
pact on performance simply because it prevents the compiler from
optimizing an operation in a hotspot. The work on soft typing can
be traced to early work by Cartwright [11] and directly influenced
research on soft Scheme [36] and Lagorio et al.’s Just [2, 23] bring-
ing soft typing to Java.

Gradual typing. The gradual typing approach of Siek and Taha
allows for typed and untyped values to commingle freely [26].
When an untyped value is coerced, or cast, to a typed value, a wrap-

per is inserted to verify that all further interactions through that
particular reference behave according to the target type’s contract.
At the simplest a wrapper is a cast hT (Ri saying, intuitively,
that the value was of type R and must behave as a value of type T .
The number of wrappers is variable and can, in pathological cases,
be substantial [19]. In practice, any program that has more than a
single wrapper for any value is likely to be visibly slower. In the
presence of aliasing and side-effects the wrappers typically can not
be discharged on the spot and have to be kept as long as the value
is live. The impact of this design choice is that any operation on a
value may fail if that value is a dynamic type which does not abide
by the contract imposed by its wrapper. Wrapper have to be manip-
ulated at run-time and compiler optimizations are inhibited as the
compiler has to emit code that assumes the presence of wrappers
everywhere. Some of these problems may be avoided with program
analysis, but there is currently no published work that demonstrates
this. To provide improved debugging support researchers have in-
vestigated the notion of blame control in the context of gradual typ-
ing, [14, 29, 32, 34]. The underlying notion is that concretely typed
parts of a program should not be blamed for run-time type errors.
As an example, let T be a type with a method m and x be a vari-
able of type T. Now, if some object o, that does not understand m, is
stored in T, blame tracking will not blame the call x.m()—which is
correct as x has type T—for throwing a “message not understood”
exception at run-time. Rather, it will identify the place in the code
where o was cast to T. Fine-grained blame control requires that a
reference “remembers” each cast it flows through, perhaps modulo
optimizations on redundant casts. Storing such information in ref-
erences and not in objects is key to achieve traceability, but incurs
additional run-time overhead on top of the run-time type checks.
Evaluating the performance impact of blame tracking and its prac-
tical impact on the ability to debug gradually typed programs has
not yet been investigated. We use the term gradual typing to refer
to a family of approaches that includes hybrid typing [15] and that
have their roots in a contract-based approach of [14, 18].

3. A Type System for Program Evolution

In this paper we propose a type system for a class-based object-
oriented programming language with three kinds of types. Dynamic

types, denoted by the type dyn, represent values that are manipu-
lated with no static checks. Dynamic types offer programmers max-
imal flexibility as any operation is allowed, as long as the target ob-
ject implements the requested method. However, dyn gives little
aid to find bugs, to capture design intents, or to prove properties. At
the other extreme, we depart from previous work on gradual typ-
ing, by offering concrete types. Concrete types behave exactly how
programmers steeped in statically typed languages would expect. A
variable of concrete type C is guaranteed to refer to an instance of C
or one of its subtypes. Concrete types drastically restrict the values
that can be bound to a variable as they do not support the notion
of wrapped values found in other gradual type systems. Concrete
types are intended to facilitate optimizations such as unboxing and
inlining as the compiler can rely on the static type information to
emit efficient code. Finally, as an intermediate step between the
two, we propose like types. Like types combine static and dynamic

checking in a novel way. For any concrete type C, there is a cor-
responding like type, written like C, with an identical interface.
Whenever a programmer uses a variable typed like C, all manipu-
lations of that variable are checked statically against C’s interface,
while, at run-time, all uses of the value bound to the variable are
checked dynamically. Figure 1 shows the relations between types
(dyn will be implicit in the code snippets). Full arrows indicate
traditional subtype relations (so, for instance if B is a subtype of A,
then like B is a subtype of like A), dotted lines indicate implicit
dyn casts, and finally, dashed lines show situations where like
casts are needed.

In this paper, we have chosen a nominal type system, thus sub-
type relation between concrete types must be explicitly declared
by extends clauses. While we believe that our approach applies
equally well to structural types, our choice is motivated by prag-
matic reasons. Using class declarations to generate eponymous
types is a compact and familiar (to most programmers) way to con-
struct a type hierarchy. Moreover, techniques for generating effi-
cient field access and method dispatch code sequences for nominal
languages are well known and supported by most virtual machines.

The first key property of like type annotations is that they are
local. This is both a strength and a limitation. It is a strength
because it enables purely local type checking. Returning to our
example, like types allow us to type the parameter to move thus:

def move(p: like Point) {
x := p.getX(); y := p.getY();
p.hog(); # !Raises a compile time error!

}

Declaring the variable p to be like a Point, makes the compiler
check all operations on that variable against the interface of Point.
Thus, the call to hog would be statically rejected since there is no
such method in Point. The annotation provides the static informa-
tion necessary to enable IDE support commonly found in statically
typed languages (but not in dynamic ones).

The second key property is that like types do not restrict flexi-
bility of the code. Declaring a variable to be like C is a promise
on how that variable is used and not to what value that variable
can be bound to. For the client code, a like typed parameter is sim-
ilar to a dyn. The question of when to test conformance between
a variable’s type and the value it refers to is subtle. One of our
goals was to ensure that the addition of like type annotations would
not break working code. In particular, adding type annotations to
a library class should not cause all of its clients to break. So in-
stead of checking at invocation time, each use of a like typed vari-
able is preceded by a check that the target object has the requested
method. If the check fails, a run-time exception is thrown. Consider

B

like B

A

like A

dyn

<:

<:

<:

D

C

related by (dyn) cast

related by (like) cast
related by subtyping

<:

Figure 1. Type Relations. C and D are unrelated by inheritance.

KafKa: Gradual Typing for Objects
ECOOP 2018 Cites: 12

Most common gradual type systems provide distinct
guarantees, we give a formal framework for
comparing gradual type systems for object-oriented
languages. We present
a formal framework for
comparing gradual
type systems.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:3

cannot be ruled out before execution. In such a gradual type system, untyped code can pass
an ill-typed value to typed code, breaking soundness. The meaning of an “error” for a gradual
type system, therefore, depends on how type specifications are enforced. In other words,
each gradual type system may catch di�erent “errors.” We demonstrate this with a litmus
test consisting of three simple programs capable of distinguishing the four above-mentioned
approaches. The litmus test programs are statically well-typed and “correct” in the sense
that they run to completion without error in an untyped language. However, when executed
under di�erent gradual typing systems, they produce di�erent errors. For intuition, consider
a call, x.m(), where x : C and C has a method m returning a D. In the concrete approach, this
call will succeed. With behavioral, the call will go through, but an error may be reported
if m returns a value of the wrong type. In transient, the call is similarly guaranteed to go
through, but might return the wrong type without reporting an error. Finally, in optional,
the call may get stuck, as x may not have a method named m; and, if it succeeds, there is no
guarantee that type D will be returned.

Surface
language
(gradual)

KafKa
(static)

translations

Concrete
Optional

Transient
Behavioral{ { {

Section 3 Section 5 Section 4

We propose to compare approaches to gradual
typing for objects by translating a gradually typed
surface language to a target language called KafKa.
Our surface language is a gradually typed class-
based object-oriented language similar to Feather-
weight Java. KafKa is a statically typed class-based
object calculus with mutable state. The key di�er-
ence between the two is the sound type system and
casts of KafKa. Where the surface language allows
implicit coercions, KafKa requires explicit casts to convert types. Casts come in two kinds:
structural casts check for subtyping, while behavioral casts monitor that an object behaves as
if it was of some type. Translating from surface to target language involves adding casts, the
location and type of which depends on the gradual type system.

This paper makes the following contributions:

The design of a core calculus for gradual type systems for objects.
Translations of each gradual approach to the core calculus.
A litmus test comprised of three programs to tell apart the gradual type systems.
Supplementary material includes a mechanized proof of soundness of the type system of
the core calculus and its proof-of-concept implementation on .Net.

Our work does not address the question of performance of the translations. Each of the
semantics for gradual typing has intrinsic performance costs; but these can be mitigated by
compiler and run-time optimizations, which we do not perform. KafKa departs from prior
work (e.g. [12] as KafKa is statically typed. By translating to a statically typed core, we can
clearly see where wrapper-induced dynamic errors can occur. Another design choice is the
use of structural subtyping in KafKa. This is motivated by our desire to represent behavioral
and transient approaches that require structural subtyping. We do not foresee di�culties
either switching to a nominal type system or providing an additional nominal subtype cast.

All of our code and proofs are available from:

github.com/BenChung/GradualComparisonArtifact.

ECOOP 2018

Research

Flexible Alias Protection ECOOP 1998

Cites: 402
Aliasing is endemic in object-oriented programming.
Flexible alias protection is a conceptual model of
inter-object relationships which limits
the visibility of changes via aliases,
allowing objects to be aliased but
mitigating the undesirable effects
of aliasing.
Impact: Commercial adoption in  
RustECOOP test of time award.

ways: either an object which is referenced from outside can be added into the
shadow, or a reference from within the shadow can be passed out.

a

size contents

d

i j k

Fig. 1. Unconstrained Aliasing. The hash table a has a shadow composed of represen-
tation objects size and contents, and some argument objects contained in the table, i,
j, and k. Both contents and k are seen from the outside by d. Thus, d is able to change
the state of a’s implementation without going through a.

The breaches of encapsulation caused by aliasing may affect correctness of the
aggregate objects, causing the program to err, or, perhaps even more seriously,
opening security holes in the application. We illustrate these problems with two
examples.

Consider an object implementing a simple hash table (see Figure 2). The hash
table object has two components: an array of table entries and an integer, stored
as variables named contents and size. The hash table object is an aggregate, its
shadow contains the integer, the array, and the table entry objects in the array.
If a reference to the contents array exists from outside the hash table object
(that is, if the array is aliased) the contents of the hash table can be modified
by sending a message directly to the array object, without sending a message to
the hash table object itself.

Aliases to the hash table’s elements can arise in a number of ways. For exam-
ple, if references to the key and item objects are retained outside the hashtable,
the hash table elements will be aliased. Alternatively, a hash table operation
(such as get) can directly return a reference to an object stored in a hash table,
and this will immediately create an alias.

Aliases to the array object making up the hashtable’s internal representation
may also be created. Typically, representation objects are created within the
aggregate object of which they are a part, and so preexisting references from
outside the aggregate are unlikely. An operation upon the aggregate can, how-
ever, return a reference to one of the internal representation objects just as easily

3

The eval that men do ECOOP 2011

Cites: 282
A large-scale study of the use of
eval in JavaScript. We recorded
the behavior of 10,000 web
pages.We provide statistics
on the nature and content
of eval.
Impact: Commercial use by Apple

Table 1. Eval usage statistics.

Data Set JavaScript eval Avg eval Avg eval total eval total eval size total JS size
used use (bytes) calls calls (MB) (MB)

INTERACTIVE 100% 82% 1,210 84 7,078 8.2 204
PAGELOAD 89% 50% 655 34 158,994 99.3 1,319
RANDOM 89% 52% 627 61 384,286 229.6 1,823

C
od

e
si

ze

Interactive PageLoad Random

51
2K

B
1.

5M
B

2.
5M

B
3.

5M
B

●

● ●

Fig. 1. Code size. The distribution of
total size of code loaded during evalu-
ation of each website.

JavaScript code size. As in our previous study, we
found that most web sites have less than 512KB
of JavaScript code, with some significant outliers,
especially in the most popular sites. Fig. 1 dis-
plays the distribution of the total size of the Java-
Script code loaded during execution of each web-
site, including source loaded via eval. When the
same code is loaded multiple times we only took
it into account once. The mean sizes are 973KB
for INTERACTIVE, 187KB for PAGELOAD, and
270KB for RANDOM. The largest website was
yahoo.com with 5.09MB of JavaScript code. The
difference in code size between PAGELOAD and
RANDOM is explained by the fact that a mouse
click (or any other event) may cause additional
code to be loaded.
Number of eval call sites. We observed that the
average number of call sites is small, and interac-
tive behavior is correlated with a greater number
of call sites. Fig. 2 shows the distribution of the
number of direct call sites to the eval function that are reached per session, for sessions
where at least one call to eval was made. User interactions frequently uncovered new
call sites: while the mean number of call sites is only 1.7 in PAGELOAD, the mean of
RANDOM and INTERACTIVE is 4.0 and 13, respectively. The maximum number of call
sites in INTERACTIVE was 77, which is lower than both PAGELOAD and RANDOM
(127 and 1331 call sites, respectively).
Number of calls to eval. Unsurprisingly, user interaction is correlated with the number
of calls to eval, and websites call eval in both phases of script execution. We observed
an average of 38 calls to eval in the INTERACTIVE data set, 28 in PAGELOAD, and 85 in
RANDOM. Fig. 3 gives the distribution of the number of invocations of eval per website.
The largest number of invocations occurs in RANDOM with a whopping 111,535 calls.
Amount of source loaded by eval. The size of source text passed to eval widely varies
depending on what is being evaluated. Fig. 4 shows the distribution of source text size.
Strings range in size from empty strings to large chunks of data or code. While for
INTERACTIVE about two thirds of the strings are less than 64 bytes long, the maxi-
mum observed size was 225KB. The PAGELOAD and RANDOM data sets tell similar
stories, 85% and 80%, respectively, of strings are less than 64 bytes, but they peak at

Integrating Typed and Untyped Code in
a Scripting LanguagePOPL 2010

Cites: 102
Integrate untyped code and typed
code in the same system to
allow a prototype to
smoothly evolve into a robust
program. A novel intermediate
point between dynamic and
static typing.

model opaque as a small change in the code can have a large im-
pact on performance simply because it prevents the compiler from
optimizing an operation in a hotspot. The work on soft typing can
be traced to early work by Cartwright [11] and directly influenced
research on soft Scheme [36] and Lagorio et al.’s Just [2, 23] bring-
ing soft typing to Java.

Gradual typing. The gradual typing approach of Siek and Taha
allows for typed and untyped values to commingle freely [26].
When an untyped value is coerced, or cast, to a typed value, a wrap-

per is inserted to verify that all further interactions through that
particular reference behave according to the target type’s contract.
At the simplest a wrapper is a cast hT (Ri saying, intuitively,
that the value was of type R and must behave as a value of type T .
The number of wrappers is variable and can, in pathological cases,
be substantial [19]. In practice, any program that has more than a
single wrapper for any value is likely to be visibly slower. In the
presence of aliasing and side-effects the wrappers typically can not
be discharged on the spot and have to be kept as long as the value
is live. The impact of this design choice is that any operation on a
value may fail if that value is a dynamic type which does not abide
by the contract imposed by its wrapper. Wrapper have to be manip-
ulated at run-time and compiler optimizations are inhibited as the
compiler has to emit code that assumes the presence of wrappers
everywhere. Some of these problems may be avoided with program
analysis, but there is currently no published work that demonstrates
this. To provide improved debugging support researchers have in-
vestigated the notion of blame control in the context of gradual typ-
ing, [14, 29, 32, 34]. The underlying notion is that concretely typed
parts of a program should not be blamed for run-time type errors.
As an example, let T be a type with a method m and x be a vari-
able of type T. Now, if some object o, that does not understand m, is
stored in T, blame tracking will not blame the call x.m()—which is
correct as x has type T—for throwing a “message not understood”
exception at run-time. Rather, it will identify the place in the code
where o was cast to T. Fine-grained blame control requires that a
reference “remembers” each cast it flows through, perhaps modulo
optimizations on redundant casts. Storing such information in ref-
erences and not in objects is key to achieve traceability, but incurs
additional run-time overhead on top of the run-time type checks.
Evaluating the performance impact of blame tracking and its prac-
tical impact on the ability to debug gradually typed programs has
not yet been investigated. We use the term gradual typing to refer
to a family of approaches that includes hybrid typing [15] and that
have their roots in a contract-based approach of [14, 18].

3. A Type System for Program Evolution

In this paper we propose a type system for a class-based object-
oriented programming language with three kinds of types. Dynamic

types, denoted by the type dyn, represent values that are manipu-
lated with no static checks. Dynamic types offer programmers max-
imal flexibility as any operation is allowed, as long as the target ob-
ject implements the requested method. However, dyn gives little
aid to find bugs, to capture design intents, or to prove properties. At
the other extreme, we depart from previous work on gradual typ-
ing, by offering concrete types. Concrete types behave exactly how
programmers steeped in statically typed languages would expect. A
variable of concrete type C is guaranteed to refer to an instance of C
or one of its subtypes. Concrete types drastically restrict the values
that can be bound to a variable as they do not support the notion
of wrapped values found in other gradual type systems. Concrete
types are intended to facilitate optimizations such as unboxing and
inlining as the compiler can rely on the static type information to
emit efficient code. Finally, as an intermediate step between the
two, we propose like types. Like types combine static and dynamic

checking in a novel way. For any concrete type C, there is a cor-
responding like type, written like C, with an identical interface.
Whenever a programmer uses a variable typed like C, all manipu-
lations of that variable are checked statically against C’s interface,
while, at run-time, all uses of the value bound to the variable are
checked dynamically. Figure 1 shows the relations between types
(dyn will be implicit in the code snippets). Full arrows indicate
traditional subtype relations (so, for instance if B is a subtype of A,
then like B is a subtype of like A), dotted lines indicate implicit
dyn casts, and finally, dashed lines show situations where like
casts are needed.

In this paper, we have chosen a nominal type system, thus sub-
type relation between concrete types must be explicitly declared
by extends clauses. While we believe that our approach applies
equally well to structural types, our choice is motivated by prag-
matic reasons. Using class declarations to generate eponymous
types is a compact and familiar (to most programmers) way to con-
struct a type hierarchy. Moreover, techniques for generating effi-
cient field access and method dispatch code sequences for nominal
languages are well known and supported by most virtual machines.

The first key property of like type annotations is that they are
local. This is both a strength and a limitation. It is a strength
because it enables purely local type checking. Returning to our
example, like types allow us to type the parameter to move thus:

def move(p: like Point) {
x := p.getX(); y := p.getY();
p.hog(); # !Raises a compile time error!

}

Declaring the variable p to be like a Point, makes the compiler
check all operations on that variable against the interface of Point.
Thus, the call to hog would be statically rejected since there is no
such method in Point. The annotation provides the static informa-
tion necessary to enable IDE support commonly found in statically
typed languages (but not in dynamic ones).

The second key property is that like types do not restrict flexi-
bility of the code. Declaring a variable to be like C is a promise
on how that variable is used and not to what value that variable
can be bound to. For the client code, a like typed parameter is sim-
ilar to a dyn. The question of when to test conformance between
a variable’s type and the value it refers to is subtle. One of our
goals was to ensure that the addition of like type annotations would
not break working code. In particular, adding type annotations to
a library class should not cause all of its clients to break. So in-
stead of checking at invocation time, each use of a like typed vari-
able is preceded by a check that the target object has the requested
method. If the check fails, a run-time exception is thrown. Consider

B

like B

A

like A

dyn

<:

<:

<:

D

C

related by (dyn) cast

related by (like) cast
related by subtyping

<:

Figure 1. Type Relations. C and D are unrelated by inheritance.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:3

cannot be ruled out before execution. In such a gradual type system, untyped code can pass
an ill-typed value to typed code, breaking soundness. The meaning of an “error” for a gradual
type system, therefore, depends on how type specifications are enforced. In other words,
each gradual type system may catch di�erent “errors.” We demonstrate this with a litmus
test consisting of three simple programs capable of distinguishing the four above-mentioned
approaches. The litmus test programs are statically well-typed and “correct” in the sense
that they run to completion without error in an untyped language. However, when executed
under di�erent gradual typing systems, they produce di�erent errors. For intuition, consider
a call, x.m(), where x : C and C has a method m returning a D. In the concrete approach, this
call will succeed. With behavioral, the call will go through, but an error may be reported
if m returns a value of the wrong type. In transient, the call is similarly guaranteed to go
through, but might return the wrong type without reporting an error. Finally, in optional,
the call may get stuck, as x may not have a method named m; and, if it succeeds, there is no
guarantee that type D will be returned.

Surface
language
(gradual)

KafKa
(static)

translations

Concrete
Optional

Transient
Behavioral{ { {

Section 3 Section 5 Section 4

We propose to compare approaches to gradual
typing for objects by translating a gradually typed
surface language to a target language called KafKa.
Our surface language is a gradually typed class-
based object-oriented language similar to Feather-
weight Java. KafKa is a statically typed class-based
object calculus with mutable state. The key di�er-
ence between the two is the sound type system and
casts of KafKa. Where the surface language allows
implicit coercions, KafKa requires explicit casts to convert types. Casts come in two kinds:
structural casts check for subtyping, while behavioral casts monitor that an object behaves as
if it was of some type. Translating from surface to target language involves adding casts, the
location and type of which depends on the gradual type system.

This paper makes the following contributions:

The design of a core calculus for gradual type systems for objects.
Translations of each gradual approach to the core calculus.
A litmus test comprised of three programs to tell apart the gradual type systems.
Supplementary material includes a mechanized proof of soundness of the type system of
the core calculus and its proof-of-concept implementation on .Net.

Our work does not address the question of performance of the translations. Each of the
semantics for gradual typing has intrinsic performance costs; but these can be mitigated by
compiler and run-time optimizations, which we do not perform. KafKa departs from prior
work (e.g. [12] as KafKa is statically typed. By translating to a statically typed core, we can
clearly see where wrapper-induced dynamic errors can occur. Another design choice is the
use of structural subtyping in KafKa. This is motivated by our desire to represent behavioral
and transient approaches that require structural subtyping. We do not foresee di�culties
either switching to a nominal type system or providing an additional nominal subtype cast.

All of our code and proofs are available from:

github.com/BenChung/GradualComparisonArtifact.

ECOOP 2018

KafKa: Gradual Typing for Objects
ECOOP 2018 Cites: 12

Most common gradual type systems provide distinct
guarantees, we give a formal framework for
comparing gradual type systems for object-oriented
languages. We present
a formal framework for
comparing gradual
type systems.

Research

Flexible Alias Protection ECOOP 1998

Cites: 402
Aliasing is endemic in object-oriented programming.
Flexible alias protection is a conceptual model of
inter-object relationships which limits
the visibility of changes via aliases,
allowing objects to be aliased but
mitigating the undesirable effects
of aliasing.
Impact: Commercial adoption in  
RustECOOP test of time award.

ways: either an object which is referenced from outside can be added into the
shadow, or a reference from within the shadow can be passed out.

a

size contents

d

i j k

Fig. 1. Unconstrained Aliasing. The hash table a has a shadow composed of represen-
tation objects size and contents, and some argument objects contained in the table, i,
j, and k. Both contents and k are seen from the outside by d. Thus, d is able to change
the state of a’s implementation without going through a.

The breaches of encapsulation caused by aliasing may affect correctness of the
aggregate objects, causing the program to err, or, perhaps even more seriously,
opening security holes in the application. We illustrate these problems with two
examples.

Consider an object implementing a simple hash table (see Figure 2). The hash
table object has two components: an array of table entries and an integer, stored
as variables named contents and size. The hash table object is an aggregate, its
shadow contains the integer, the array, and the table entry objects in the array.
If a reference to the contents array exists from outside the hash table object
(that is, if the array is aliased) the contents of the hash table can be modified
by sending a message directly to the array object, without sending a message to
the hash table object itself.

Aliases to the hash table’s elements can arise in a number of ways. For exam-
ple, if references to the key and item objects are retained outside the hashtable,
the hash table elements will be aliased. Alternatively, a hash table operation
(such as get) can directly return a reference to an object stored in a hash table,
and this will immediately create an alias.

Aliases to the array object making up the hashtable’s internal representation
may also be created. Typically, representation objects are created within the
aggregate object of which they are a part, and so preexisting references from
outside the aggregate are unlikely. An operation upon the aggregate can, how-
ever, return a reference to one of the internal representation objects just as easily

3

The eval that men do ECOOP 2011

Cites: 224
A large-scale study of the use of
eval in JavaScript. We recorded
the behavior of 10,000 web pages.
We provide statistics on the nature
and content of eval.
Impact: Commercial adoption by  
Apple

Table 1. Eval usage statistics.

Data Set JavaScript eval Avg eval Avg eval total eval total eval size total JS size
used use (bytes) calls calls (MB) (MB)

INTERACTIVE 100% 82% 1,210 84 7,078 8.2 204
PAGELOAD 89% 50% 655 34 158,994 99.3 1,319
RANDOM 89% 52% 627 61 384,286 229.6 1,823

C
od

e
si

ze

Interactive PageLoad Random

51
2K

B
1.

5M
B

2.
5M

B
3.

5M
B

●

● ●

Fig. 1. Code size. The distribution of
total size of code loaded during evalu-
ation of each website.

JavaScript code size. As in our previous study, we
found that most web sites have less than 512KB
of JavaScript code, with some significant outliers,
especially in the most popular sites. Fig. 1 dis-
plays the distribution of the total size of the Java-
Script code loaded during execution of each web-
site, including source loaded via eval. When the
same code is loaded multiple times we only took
it into account once. The mean sizes are 973KB
for INTERACTIVE, 187KB for PAGELOAD, and
270KB for RANDOM. The largest website was
yahoo.com with 5.09MB of JavaScript code. The
difference in code size between PAGELOAD and
RANDOM is explained by the fact that a mouse
click (or any other event) may cause additional
code to be loaded.
Number of eval call sites. We observed that the
average number of call sites is small, and interac-
tive behavior is correlated with a greater number
of call sites. Fig. 2 shows the distribution of the
number of direct call sites to the eval function that are reached per session, for sessions
where at least one call to eval was made. User interactions frequently uncovered new
call sites: while the mean number of call sites is only 1.7 in PAGELOAD, the mean of
RANDOM and INTERACTIVE is 4.0 and 13, respectively. The maximum number of call
sites in INTERACTIVE was 77, which is lower than both PAGELOAD and RANDOM
(127 and 1331 call sites, respectively).
Number of calls to eval. Unsurprisingly, user interaction is correlated with the number
of calls to eval, and websites call eval in both phases of script execution. We observed
an average of 38 calls to eval in the INTERACTIVE data set, 28 in PAGELOAD, and 85 in
RANDOM. Fig. 3 gives the distribution of the number of invocations of eval per website.
The largest number of invocations occurs in RANDOM with a whopping 111,535 calls.
Amount of source loaded by eval. The size of source text passed to eval widely varies
depending on what is being evaluated. Fig. 4 shows the distribution of source text size.
Strings range in size from empty strings to large chunks of data or code. While for
INTERACTIVE about two thirds of the strings are less than 64 bytes long, the maxi-
mum observed size was 225KB. The PAGELOAD and RANDOM data sets tell similar
stories, 85% and 80%, respectively, of strings are less than 64 bytes, but they peak at

Integrating Typed and Untyped Code in
a Scripting LanguagePOPL 2010

Cites: 102
Integrate untyped code and typed
code in the same system to
allow a prototype to
smoothly evolve into a robust
program. A novel intermediate
point between dynamic and
static typing.

model opaque as a small change in the code can have a large im-
pact on performance simply because it prevents the compiler from
optimizing an operation in a hotspot. The work on soft typing can
be traced to early work by Cartwright [11] and directly influenced
research on soft Scheme [36] and Lagorio et al.’s Just [2, 23] bring-
ing soft typing to Java.

Gradual typing. The gradual typing approach of Siek and Taha
allows for typed and untyped values to commingle freely [26].
When an untyped value is coerced, or cast, to a typed value, a wrap-

per is inserted to verify that all further interactions through that
particular reference behave according to the target type’s contract.
At the simplest a wrapper is a cast hT (Ri saying, intuitively,
that the value was of type R and must behave as a value of type T .
The number of wrappers is variable and can, in pathological cases,
be substantial [19]. In practice, any program that has more than a
single wrapper for any value is likely to be visibly slower. In the
presence of aliasing and side-effects the wrappers typically can not
be discharged on the spot and have to be kept as long as the value
is live. The impact of this design choice is that any operation on a
value may fail if that value is a dynamic type which does not abide
by the contract imposed by its wrapper. Wrapper have to be manip-
ulated at run-time and compiler optimizations are inhibited as the
compiler has to emit code that assumes the presence of wrappers
everywhere. Some of these problems may be avoided with program
analysis, but there is currently no published work that demonstrates
this. To provide improved debugging support researchers have in-
vestigated the notion of blame control in the context of gradual typ-
ing, [14, 29, 32, 34]. The underlying notion is that concretely typed
parts of a program should not be blamed for run-time type errors.
As an example, let T be a type with a method m and x be a vari-
able of type T. Now, if some object o, that does not understand m, is
stored in T, blame tracking will not blame the call x.m()—which is
correct as x has type T—for throwing a “message not understood”
exception at run-time. Rather, it will identify the place in the code
where o was cast to T. Fine-grained blame control requires that a
reference “remembers” each cast it flows through, perhaps modulo
optimizations on redundant casts. Storing such information in ref-
erences and not in objects is key to achieve traceability, but incurs
additional run-time overhead on top of the run-time type checks.
Evaluating the performance impact of blame tracking and its prac-
tical impact on the ability to debug gradually typed programs has
not yet been investigated. We use the term gradual typing to refer
to a family of approaches that includes hybrid typing [15] and that
have their roots in a contract-based approach of [14, 18].

3. A Type System for Program Evolution

In this paper we propose a type system for a class-based object-
oriented programming language with three kinds of types. Dynamic

types, denoted by the type dyn, represent values that are manipu-
lated with no static checks. Dynamic types offer programmers max-
imal flexibility as any operation is allowed, as long as the target ob-
ject implements the requested method. However, dyn gives little
aid to find bugs, to capture design intents, or to prove properties. At
the other extreme, we depart from previous work on gradual typ-
ing, by offering concrete types. Concrete types behave exactly how
programmers steeped in statically typed languages would expect. A
variable of concrete type C is guaranteed to refer to an instance of C
or one of its subtypes. Concrete types drastically restrict the values
that can be bound to a variable as they do not support the notion
of wrapped values found in other gradual type systems. Concrete
types are intended to facilitate optimizations such as unboxing and
inlining as the compiler can rely on the static type information to
emit efficient code. Finally, as an intermediate step between the
two, we propose like types. Like types combine static and dynamic

checking in a novel way. For any concrete type C, there is a cor-
responding like type, written like C, with an identical interface.
Whenever a programmer uses a variable typed like C, all manipu-
lations of that variable are checked statically against C’s interface,
while, at run-time, all uses of the value bound to the variable are
checked dynamically. Figure 1 shows the relations between types
(dyn will be implicit in the code snippets). Full arrows indicate
traditional subtype relations (so, for instance if B is a subtype of A,
then like B is a subtype of like A), dotted lines indicate implicit
dyn casts, and finally, dashed lines show situations where like
casts are needed.

In this paper, we have chosen a nominal type system, thus sub-
type relation between concrete types must be explicitly declared
by extends clauses. While we believe that our approach applies
equally well to structural types, our choice is motivated by prag-
matic reasons. Using class declarations to generate eponymous
types is a compact and familiar (to most programmers) way to con-
struct a type hierarchy. Moreover, techniques for generating effi-
cient field access and method dispatch code sequences for nominal
languages are well known and supported by most virtual machines.

The first key property of like type annotations is that they are
local. This is both a strength and a limitation. It is a strength
because it enables purely local type checking. Returning to our
example, like types allow us to type the parameter to move thus:

def move(p: like Point) {
x := p.getX(); y := p.getY();
p.hog(); # !Raises a compile time error!

}

Declaring the variable p to be like a Point, makes the compiler
check all operations on that variable against the interface of Point.
Thus, the call to hog would be statically rejected since there is no
such method in Point. The annotation provides the static informa-
tion necessary to enable IDE support commonly found in statically
typed languages (but not in dynamic ones).

The second key property is that like types do not restrict flexi-
bility of the code. Declaring a variable to be like C is a promise
on how that variable is used and not to what value that variable
can be bound to. For the client code, a like typed parameter is sim-
ilar to a dyn. The question of when to test conformance between
a variable’s type and the value it refers to is subtle. One of our
goals was to ensure that the addition of like type annotations would
not break working code. In particular, adding type annotations to
a library class should not cause all of its clients to break. So in-
stead of checking at invocation time, each use of a like typed vari-
able is preceded by a check that the target object has the requested
method. If the check fails, a run-time exception is thrown. Consider

B

like B

A

like A

dyn

<:

<:

<:

D

C

related by (dyn) cast

related by (like) cast
related by subtyping

<:

Figure 1. Type Relations. C and D are unrelated by inheritance.

KafKa: Gradual Typing for Objects
ECOOP 2018 Cites: 21

Most gradual type systems provide distinct
guarantees, we give a formal framework
for comparing gradual
type systems for
object-oriented
programming
languages.

B. Chung, P. Li, F. Zappa Nardelli, and J. Vitek 12:3

cannot be ruled out before execution. In such a gradual type system, untyped code can pass
an ill-typed value to typed code, breaking soundness. The meaning of an “error” for a gradual
type system, therefore, depends on how type specifications are enforced. In other words,
each gradual type system may catch di�erent “errors.” We demonstrate this with a litmus
test consisting of three simple programs capable of distinguishing the four above-mentioned
approaches. The litmus test programs are statically well-typed and “correct” in the sense
that they run to completion without error in an untyped language. However, when executed
under di�erent gradual typing systems, they produce di�erent errors. For intuition, consider
a call, x.m(), where x : C and C has a method m returning a D. In the concrete approach, this
call will succeed. With behavioral, the call will go through, but an error may be reported
if m returns a value of the wrong type. In transient, the call is similarly guaranteed to go
through, but might return the wrong type without reporting an error. Finally, in optional,
the call may get stuck, as x may not have a method named m; and, if it succeeds, there is no
guarantee that type D will be returned.

Surface
language
(gradual)

KafKa
(static)

translations

Concrete
Optional

Transient
Behavioral{ { {

Section 3 Section 5 Section 4

We propose to compare approaches to gradual
typing for objects by translating a gradually typed
surface language to a target language called KafKa.
Our surface language is a gradually typed class-
based object-oriented language similar to Feather-
weight Java. KafKa is a statically typed class-based
object calculus with mutable state. The key di�er-
ence between the two is the sound type system and
casts of KafKa. Where the surface language allows
implicit coercions, KafKa requires explicit casts to convert types. Casts come in two kinds:
structural casts check for subtyping, while behavioral casts monitor that an object behaves as
if it was of some type. Translating from surface to target language involves adding casts, the
location and type of which depends on the gradual type system.

This paper makes the following contributions:

The design of a core calculus for gradual type systems for objects.
Translations of each gradual approach to the core calculus.
A litmus test comprised of three programs to tell apart the gradual type systems.
Supplementary material includes a mechanized proof of soundness of the type system of
the core calculus and its proof-of-concept implementation on .Net.

Our work does not address the question of performance of the translations. Each of the
semantics for gradual typing has intrinsic performance costs; but these can be mitigated by
compiler and run-time optimizations, which we do not perform. KafKa departs from prior
work (e.g. [12] as KafKa is statically typed. By translating to a statically typed core, we can
clearly see where wrapper-induced dynamic errors can occur. Another design choice is the
use of structural subtyping in KafKa. This is motivated by our desire to represent behavioral
and transient approaches that require structural subtyping. We do not foresee di�culties
either switching to a nominal type system or providing an additional nominal subtype cast.

All of our code and proofs are available from:

github.com/BenChung/GradualComparisonArtifact.

ECOOP 2018

Motivations

Motivations

There exists a Programming Language that is The Best

Let’s discuss

As you know, you
develop software
with the language
you have, not the
language you might
want or wish to have
at a later time.

 ~ D. Rumsfeld, 2004

12

The Iron Rolling Mill by Adolf Menzel

Do programming languages enhance worker productivity?
Evaluation is a failure of the
programing language
community
New languages and new
paradigms introduced without
a shred of scientific evidence
We can evaluate the benefits
on a compiler on a suite of
unrepresentative benchmarks
but not how to evaluate the
benefits of a language for
programmers
What do we measure?
How do we measure?

13

You dropped it
here?

No, two
blocks
away

Why are you
looking here?

Because
the light is

better
here.

I’m looking for
a quarter I
dropped

14

Large-scale corpus analysis

Premkumar
Devanbu

Vladimir
Filikov

Daryl
Posnett

Baishaki
Ray

UC Davis

A Large Scale Study of Programming Languages and Code Quality on Github

RQ1 Are some languages more defect prone than others?
RQ2 Which language properties relate to defects?
RQ3 Does language defect proneness depend on domain?
RQ4 What’s the relation between language & bug category?

16

A Large Scale Study of Programming Languages and Code Quality on Github

Projects contain a sequence of commits; each commit has a text explanation and
affects a number of files in various languages; commits can be labelled as bug-fixing;
the prevalence of bug-fixing commits is a proxy for code quality.

17

A Large Scale Study of Programming Languages and Code Quality on Github

Projects contain a sequence of commits; each commit has a text explanation and
affects a number of files in various languages; commits can be labelled as bug-fixing;
the prevalence of bug-fixing commits is a proxy for code quality.

Methodology:
1. Acquire 800 projects written in 17 languages
2. Split by file according to language
3. Filter projects with <20 commits/language
4. Label commits as bug-fixing
5. Negative Binomial Regression to model bug-fixing commits

18

TypeScript
ClojureScala

Haskell
PerlRuby

Go CoffeeScript
ErlangJava

C# Python

JavaScript

C Objective-CPHP
C++

8 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek

Table 2. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Repetition
(a) FSE [26] (b) CACM [25] (c)
Coef P-val Coef P-val Coef P-val

Intercept -1.93 <0.001 -2.04 <0.001 -1.8 <0.001
log commits 2.26 <0.001 0.96 <0.001 0.97 <0.001

log age 0.11 <0.01 0.06 <0.001 0.03 0.03
log size 0.05 <0.05 0.04 <0.001 0.02 <0.05
log devs 0.16 <0.001 0.06 <0.001 0.07 <0.001

C 0.15 <0.001 0.11 <0.01 0.16 <0.001
C++ 0.23 <0.001 0.18 <0.001 0.22 <0.001
C# 0.03 – -0.02 – 0.03 0.602

Objective-C 0.18 <0.001 0.15 <0.01 0.17 0.001
Go -0.08 – -0.11 – -0.11 0.086

Java -0.01 – -0.06 – -0.02 0.61
Co�eescript -0.07 – 0.06 – 0.05 0.325
Javascript 0.06 <0.01 0.03 – 0.07 <0.01
Typescript -0.43 <0.001 0.15 – -0.41 <0.001

Ruby -0.15 <0.05 -0.13 <0.01 -0.13 <0.05
Php 0.15 <0.001 0.1 <0.05 0.13 0.009

Python 0.1 <0.01 0.08 <0.05 0.1 <0.01
Perl -0.15 – -0.12 – -0.11 0.218

Clojure -0.29 <0.001 -0.3 <0.001 -0.31 <0.001
Erlang 0 – -0.03 – 0 1
Haskell -0.23 <0.001 -0.26 <0.001 -0.24 <0.001
Scala -0.28 <0.001 -0.24 <0.001 -0.22 <0.001

observed <.01; per their established threshold of .005, the association of PHP with defects is not293

statistically signi�cant. The original authors corrected that value in their CACM repetition (shown294

in Table 2 (b)), so this may just be a reporting error. On the other hand, the CACM paper dropped295

the signi�cance of JavaScript and TypeScript without explanation. The other di�erence is in the296

coe�cients for the control variables. Upon inspection of the code, we noticed that the original297

manuscript used a combination of log and log10 transformations of these variables, while the298

repetition consistently used log. The author’s CACM repetition �xed this problem.299

3.2.2 Which language properties relate to defects (RQ2). As we approached RQ2, we faced an issue300

with the language categorization used in the FSE paper. The original categorization is reprinted in301

Table 3. The intuition is that each category should group languages that have “similar” characteristics302

along some axis of language design.303

The �rst thing to observe is that any such categorization will have some unclear �ts. The original304

authors admitted as much by excluding TypeScript from this table, as it was not obvious whether a305

gradually typed language is static or dynamic. But there were other odd ducks. Scala is categorized306

as a functional language, yet it allows programs to be written in an imperative manner. We are307

not aware of any study that shows that the majority of Scala users write functional code. Our308

experience with Scala is that users freely mix functional and imperative programming. Objective-C309

is listed as a statically compiled and unmanaged language. However, Objective-C has an object310

system that is inspired by SmallTalk; its treatment of objects is quite dynamic, and objects are311

collected by reference counting, so its memory is partially managed. The Type category is the most312

counter-intuitive for programming language experts as it expresses whether a language allows313

value of one type to be interpreted as another, e.g. due to automatic conversion. The CACM paper314

, Vol. 1, No. 1, Article . Publication date: May 2019.

A Large Scale Study of Programming Languages and Code Quality on Github

19Kutner, et al. 2004. Applied Linear Statistical Models. https://books.google.cz/books?id=XAzYCwAAQBAJ

Reproducible science

“give all of the information to help other judge the value of your contribution; not just the information that leads to a particular judgment”
- R. Feynman, Cargo Cult Science, 1974

“…a single project, Google’s v8, a JavaScript project, was
responsible for all of the errors in Middleware.”

 — Ray, Posnett, Filikov, Devambu

21

“give all of the information to help other judge the value of your contribution; not just the information that leads to a particular judgment”
- R. Feynman, Cargo Cult Science, 1974

*Roger Peng. Reproducible research in computational science. Science, 2011

22

The authors of the original study shared their data (3.4GB) and code (700 loc R)

We thank them

REPETITION
23

8 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek

Table 2. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Repetition
(a) FSE [26] (b) CACM [25] (c)
Coef P-val Coef P-val Coef P-val

Intercept -1.93 <0.001 -2.04 <0.001 -1.8 <0.001
log commits 2.26 <0.001 0.96 <0.001 0.97 <0.001

log age 0.11 <0.01 0.06 <0.001 0.03 0.03
log size 0.05 <0.05 0.04 <0.001 0.02 <0.05
log devs 0.16 <0.001 0.06 <0.001 0.07 <0.001

C 0.15 <0.001 0.11 <0.01 0.16 <0.001
C++ 0.23 <0.001 0.18 <0.001 0.22 <0.001
C# 0.03 – -0.02 – 0.03 0.602

Objective-C 0.18 <0.001 0.15 <0.01 0.17 0.001
Go -0.08 – -0.11 – -0.11 0.086

Java -0.01 – -0.06 – -0.02 0.61
Co�eescript -0.07 – 0.06 – 0.05 0.325
Javascript 0.06 <0.01 0.03 – 0.07 <0.01
Typescript -0.43 <0.001 0.15 – -0.41 <0.001

Ruby -0.15 <0.05 -0.13 <0.01 -0.13 <0.05
Php 0.15 <0.001 0.1 <0.05 0.13 0.009

Python 0.1 <0.01 0.08 <0.05 0.1 <0.01
Perl -0.15 – -0.12 – -0.11 0.218

Clojure -0.29 <0.001 -0.3 <0.001 -0.31 <0.001
Erlang 0 – -0.03 – 0 1
Haskell -0.23 <0.001 -0.26 <0.001 -0.24 <0.001
Scala -0.28 <0.001 -0.24 <0.001 -0.22 <0.001

observed <.01; per their established threshold of .005, the association of PHP with defects is not293

statistically signi�cant. The original authors corrected that value in their CACM repetition (shown294

in Table 2 (b)), so this may just be a reporting error. On the other hand, the CACM paper dropped295

the signi�cance of JavaScript and TypeScript without explanation. The other di�erence is in the296

coe�cients for the control variables. Upon inspection of the code, we noticed that the original297

manuscript used a combination of log and log10 transformations of these variables, while the298

repetition consistently used log. The author’s CACM repetition �xed this problem.299

3.2.2 Which language properties relate to defects (RQ2). As we approached RQ2, we faced an issue300

with the language categorization used in the FSE paper. The original categorization is reprinted in301

Table 3. The intuition is that each category should group languages that have “similar” characteristics302

along some axis of language design.303

The �rst thing to observe is that any such categorization will have some unclear �ts. The original304

authors admitted as much by excluding TypeScript from this table, as it was not obvious whether a305

gradually typed language is static or dynamic. But there were other odd ducks. Scala is categorized306

as a functional language, yet it allows programs to be written in an imperative manner. We are307

not aware of any study that shows that the majority of Scala users write functional code. Our308

experience with Scala is that users freely mix functional and imperative programming. Objective-C309

is listed as a statically compiled and unmanaged language. However, Objective-C has an object310

system that is inspired by SmallTalk; its treatment of objects is quite dynamic, and objects are311

collected by reference counting, so its memory is partially managed. The Type category is the most312

counter-intuitive for programming language experts as it expresses whether a language allows313

value of one type to be interpreted as another, e.g. due to automatic conversion. The CACM paper314

, Vol. 1, No. 1, Article . Publication date: May 2019.

8 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek

Table 2. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Repetition
(a) FSE [26] (b) CACM [25] (c)
Coef P-val Coef P-val Coef P-val

Intercept -1.93 <0.001 -2.04 <0.001 -1.8 <0.001
log commits 2.26 <0.001 0.96 <0.001 0.97 <0.001

log age 0.11 <0.01 0.06 <0.001 0.03 0.03
log size 0.05 <0.05 0.04 <0.001 0.02 <0.05
log devs 0.16 <0.001 0.06 <0.001 0.07 <0.001

C 0.15 <0.001 0.11 <0.01 0.16 <0.001
C++ 0.23 <0.001 0.18 <0.001 0.22 <0.001
C# 0.03 – -0.02 – 0.03 0.602

Objective-C 0.18 <0.001 0.15 <0.01 0.17 0.001
Go -0.08 – -0.11 – -0.11 0.086

Java -0.01 – -0.06 – -0.02 0.61
Co�eescript -0.07 – 0.06 – 0.05 0.325
Javascript 0.06 <0.01 0.03 – 0.07 <0.01
Typescript -0.43 <0.001 0.15 – -0.41 <0.001

Ruby -0.15 <0.05 -0.13 <0.01 -0.13 <0.05
Php 0.15 <0.001 0.1 <0.05 0.13 0.009

Python 0.1 <0.01 0.08 <0.05 0.1 <0.01
Perl -0.15 – -0.12 – -0.11 0.218

Clojure -0.29 <0.001 -0.3 <0.001 -0.31 <0.001
Erlang 0 – -0.03 – 0 1
Haskell -0.23 <0.001 -0.26 <0.001 -0.24 <0.001
Scala -0.28 <0.001 -0.24 <0.001 -0.22 <0.001

observed <.01; per their established threshold of .005, the association of PHP with defects is not293

statistically signi�cant. The original authors corrected that value in their CACM repetition (shown294

in Table 2 (b)), so this may just be a reporting error. On the other hand, the CACM paper dropped295

the signi�cance of JavaScript and TypeScript without explanation. The other di�erence is in the296

coe�cients for the control variables. Upon inspection of the code, we noticed that the original297

manuscript used a combination of log and log10 transformations of these variables, while the298

repetition consistently used log. The author’s CACM repetition �xed this problem.299

3.2.2 Which language properties relate to defects (RQ2). As we approached RQ2, we faced an issue300

with the language categorization used in the FSE paper. The original categorization is reprinted in301

Table 3. The intuition is that each category should group languages that have “similar” characteristics302

along some axis of language design.303

The �rst thing to observe is that any such categorization will have some unclear �ts. The original304

authors admitted as much by excluding TypeScript from this table, as it was not obvious whether a305

gradually typed language is static or dynamic. But there were other odd ducks. Scala is categorized306

as a functional language, yet it allows programs to be written in an imperative manner. We are307

not aware of any study that shows that the majority of Scala users write functional code. Our308

experience with Scala is that users freely mix functional and imperative programming. Objective-C309

is listed as a statically compiled and unmanaged language. However, Objective-C has an object310

system that is inspired by SmallTalk; its treatment of objects is quite dynamic, and objects are311

collected by reference counting, so its memory is partially managed. The Type category is the most312

counter-intuitive for programming language experts as it expresses whether a language allows313

value of one type to be interpreted as another, e.g. due to automatic conversion. The CACM paper314

, Vol. 1, No. 1, Article . Publication date: May 2019.

Repetition

RQ1 RQ2 RQ3 RQ4

FSE’14 This paper

Reanalysis (RQ1)

TypeScript
Clojure
Scala
Haskell
Ruby

C++
Objective-C
C
PHP
Python
JavaScript

C++

Clojure

Haskell
Ruby

C#
Go
CoffeeScript
Java
Perl
Erlang

C
C#
Objective-C
Go
JavaScript
CoffeeScript
Java
Perl
PHP
Python
Erlang
Scala
TypeScript

po
si

tiv
e

as
so

ci
at

io
n

ne
ga

tiv
e

as
so

ci
at

io
n

no
 s

ta
tis

tic
al

ly
 s

ig
ni

fic
an

t
as

so
ci

at
io

nRE
PE

TIT
IO

N

24

Repetition failures caused by:

Nonsensical language classification

Data discrepancies
Missing code

Krishnamurthi, Vitek. The real software crisis: repeatability as a core value. CACM’15 https://doi.org/10.1145/2658987

We focused on RQ1 for a reanalysis as it was mostly repeatable.

The issues we found carry over to the rest of the RQs.

REANALYSIS
25

We focused on RQ1 for a reanalysis as it was mostly repeatable.

The issues we found carry over to the rest of the RQs.

Data

Conclusions

Statistics

RE
AN

AL
YS

IS
Real

Validate data acquisition

Validate data cleaning

Validate data analysis

26

RE
AN

AL
YS

IS

SI
N

#1

28

17,388,590
LOC

61,964

3,094,437

19,129 LOC

16

SI
N

#1

12 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek

that version of Linguist incorrectly classi�ed translation �les as TypeScript. This was �xed on394

December 6th, 2014. This may explain why the number of TypeScript projects decreased between395

the FSE and CACM papers.396

4.1.3 Accounting for C++ and C. Further investigation revealed that the input data only included397

C++ commits to �les with the .cpp extension. However, C++ compilers allow many extensions,398

including .C, .cc, .CPP, .c++, .cp, and .cxx. Moreover, the dataset contained no commits to .h header399

�les. However, these �les regularly contain executable code such as inline functions in C and400

templates in C++. We could not repair this without getting additional data and writing a tool to401

label the commits in the same way as the authors did. We checked GitHub Linguist to explain the402

missing �les, but as of 2014, it was able to recognize header �les and all C++ extensions.403

Commits
C 16

C++ 7
Python 488

JavaScript 2,907

Fig. 4. V8 commits.

The only correction we applied was to delete the V8 project. While V8 is404

written mostly in C++, its commits in the dataset are mostly in JavaScript405

(Fig. 4 gives the number of commits per language in the dataset for the V8406

project). Manual inspection revealed that JavaScript commits were regres-407

sion test cases for errors in the missing C++ code. Including them would408

arti�cially increase the number of JavaScript errors. The original authors409

may have noticed a discrepancy as they removed V8 from RQ3.410

At the end of the data cleaning steps, the dataset had 708 projects, 58.2411

million lines of code, and 1.4 million commits—of which 517,770 were labeled as bug-�xing commits,412

written by 46 thousand authors. Overall, our cleaning reduced the corpus by 6.14%. Fig. 5 shows413

the relationship between commits and bug �xes in all of the languages after the cleaning. As one414

would expect, the number of bug-�xing commits correlated to the number of commits. The �gure415

also shows that the majority of commits in the corpus came from C and C++. Perl is an outlier416

because most of its commits were missing from the corpus.417

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

C

C#
C++

Clojure
Coffeescript

Erlang

Go

Haskell

Java
Javascript

Objective−C

Perl

Php
Python

Ruby

Scala

103

103.5

104

104.5

105

104 104.5 105 105.5

Commits

Bu
g−

fix
in

g
co

m
m

its

Fig. 5. Commits and bug-fixing commits a�er cleaning, plo�ed with a 95% confidence interval.

4.1.4 Labeling Accuracy. A key reanalysis question for this case study is: What is a bug-�xing418

commit? With the help of 10 independent developers employed in industry, we compared the419

manual labels of randomly selected commits to those obtained automatically in the FSE paper. We420

, Vol. 1, No. 1, Article . Publication date: May 2019.

No normalization for lines of code or commits across languages!

729 projects and 1.5 million commits. Data has 148 un-analysed projects.
Found 47K authors vs 29K reported. Explained by paper using committer instead of developer.
80.7 million lines of code. A difference of 17 million SLOC unexplaimed.

SI
N

#2

30

Webkit

Bitcoin

Webkit

Bitcoin

No control for duplication!

SI
N

#2
litecoin, mega-coin,
memorycoin, bitcoin,
bitcoin-qt-i2p, anoncoin,
smallchange, primecoin,
terracoin, zetacoin,
datacoin, datacoin-hp,
freicoin, ppcoin,
namecoin, namecoin-qt,
namecoinq, ProtoShares,
QGIS, Quantum-GIS,
incubator-spark, spark,
sbt, xsbt, Play20,
playframework, ravendb,
SignalR,
Newtonsoft.Json, Hystrix,
RxJava, clojure-scheme,
clojurescript

No control for duplication!
1.86% of data is duplicate commits

Lopes, Maj, Martins, Yang, Zitny, Sajnani, Vitek. Déjà Vu: A Map of Code Duplicates on GitHub. OOPSLA’17 https://doi.org/10.1145/3133908

SI
N

#3
Truncated data!

Out of 729 projects, 618 could be downloaded, 423 could be matched (due to owner missing)
Found 106K missing commits (~20% of data)

SI
N

#4
Erroneous Language Recognition!
First commit for TypeScript @ 2003-03-21

41 projects labeled as TypeScript, only 16 have code. Commits 10K=>3K.
Largest projects (typescript-node-definitions, DefinitelyTyped, tsd) are declarations with no code
(34.6% of remaining commits).

.ts are translation files!

SI
N

#4
Erroneous Language Recognition!
V8 is tagged as a JavaScript project

This is correct and it is the largest JavaScript project:

12 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek

that version of Linguist incorrectly classi�ed translation �les as TypeScript. This was �xed on394

December 6th, 2014. This may explain why the number of TypeScript projects decreased between395

the FSE and CACM papers.396

4.1.3 Accounting for C++ and C. Further investigation revealed that the input data only included397

C++ commits to �les with the .cpp extension. However, C++ compilers allow many extensions,398

including .C, .cc, .CPP, .c++, .cp, and .cxx. Moreover, the dataset contained no commits to .h header399

�les. However, these �les regularly contain executable code such as inline functions in C and400

templates in C++. We could not repair this without getting additional data and writing a tool to401

label the commits in the same way as the authors did. We checked GitHub Linguist to explain the402

missing �les, but as of 2014, it was able to recognize header �les and all C++ extensions.403

Commits
C 16

C++ 7
Python 488

JavaScript 2,907

Fig. 4. V8 commits.

The only correction we applied was to delete the V8 project. While V8 is404

written mostly in C++, its commits in the dataset are mostly in JavaScript405

(Fig. 4 gives the number of commits per language in the dataset for the V8406

project). Manual inspection revealed that JavaScript commits were regres-407

sion test cases for errors in the missing C++ code. Including them would408

arti�cially increase the number of JavaScript errors. The original authors409

may have noticed a discrepancy as they removed V8 from RQ3.410

At the end of the data cleaning steps, the dataset had 708 projects, 58.2411

million lines of code, and 1.4 million commits—of which 517,770 were labeled as bug-�xing commits,412

written by 46 thousand authors. Overall, our cleaning reduced the corpus by 6.14%. Fig. 5 shows413

the relationship between commits and bug �xes in all of the languages after the cleaning. As one414

would expect, the number of bug-�xing commits correlated to the number of commits. The �gure415

also shows that the majority of commits in the corpus came from C and C++. Perl is an outlier416

because most of its commits were missing from the corpus.417

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

C

C#
C++

Clojure
Coffeescript

Erlang

Go

Haskell

Java
Javascript

Objective−C

Perl

Php
Python

Ruby

Scala

103

103.5

104

104.5

105

104 104.5 105 105.5

Commits

Bu
g−

fix
in

g
co

m
m

its

Fig. 5. Commits and bug-fixing commits a�er cleaning, plo�ed with a 95% confidence interval.

4.1.4 Labeling Accuracy. A key reanalysis question for this case study is: What is a bug-�xing418

commit? With the help of 10 independent developers employed in industry, we compared the419

manual labels of randomly selected commits to those obtained automatically in the FSE paper. We420

, Vol. 1, No. 1, Article . Publication date: May 2019.

Most JavaScript code is test!

.C .cc .CPP .c++ .cp .cxx and .h are all ignored, only .cpp is used

Checked GitHub Linguist, as of 2014, able to recognize header files and all C++
16.2% of files are tests (801,248 files).

SI
N

#5
Multiple hypothesis testing

16 p-Vals =>

family-wise error rate=1−(1−.05)16= .56

Bonferroni divides cutoff by the num. of hypotheses

False Discovery Rate (FDR) allows an average

pre-specified proportion of false positives in the

list of “statistically significant” tests

Reyes, et al. 2018. Statistical Errors in Software Engineering Experiments ICSE https://doi.org/10.1145/3180155.3180161  
 

Shaffer. 1995. Multiple Hypothesis Testing. Ann.Rev.of Psychology. doi:10.1146/annurev.ps.46.020195.003021

Benjamini, Hochberg. 1995. Controlling the False Discovery Rate. J.Royal Statistical Society. https://doi.org/10. 2307/2346101  

On the Impact of Programming Languages on Code�ality 15

commits has many false positives, which must be factored into the results. A relatively simple 513

approach to achieve this relies on parameter estimation by a statistical procedure called the 514

bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled 515

with replacement the projects (and their attributes) to create resampled datasets of the same size. 516

Second, the number of bug-�xing commits bcommits⇤i of project i in the resampled dataset was 517

generated as the following random variable: 518

bcommits⇤i ⇠ Binom(size = bcommitsi , prob = 1 � FP) + Binom(size = (commitsi � bcommitsi), prob = FN)

519where FP=36% and FN=11% (Section 4.1). Finally, we analyzed the resampled dataset with Negative 520

Binomial Regression. The three steps were repeated 100,000 times to create the histograms of 521

estimates of each regression coe�cients. Applying the Bonferroni correction, the parameter was 522

viewed as statistically signi�cant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not 523

include 0. 524

4.3 Results 525

Table 6(b-e) summarizes the re-analysis results. The impact of the data cleaning, without multiple 526

hypothesis testing, is illustrated by column (b). Grey cells indicate disagreement with the conclusion 527

of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript, PHP, 528

and Python all fall outside of the “signi�cant” range of values, even without the multiplicity 529

adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the 530

impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values 531

slightly, but did not invalidate additional claims. However, FDR comes at the expense of more 532

potential false positive associations. Using the Bonferroni adjustment does not change the outcome. 533

In both cases, the p-value for one additional language, Ruby, loses its signi�cance. 534

Table 6. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept -1.93 <0.001 -1.93 <0.001 – – -1.96 – -1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *
log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *

C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – -0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go -0.08 – -0.1 0.098 0.157 1 -0.07 1 -0.04

Java -0.01 – -0.06 0.199 0.289 1 -0.03 1 -0.02
Co�eescript -0.07 – 0.06 0.261 0.322 1 0.09 1 0.04
Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript -0.43 <0.001 – – – – – – – –

Ruby -0.15 <0.05 -0.15 <0.05 <0.01 0.017 -0.12 0.134 -0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl -0.15 – -0.08 0.366 0.419 1 -0.05 1 0

Clojure -0.29 <0.001 -0.31 <0.001 <0.01 <0.01 -0.28 <0.01 -0.15 *
Erlang 0 – -0.02 0.687 0.733 1 0.01 1 -0.01
Haskell -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.2 <0.01 -0.12 *
Scala -0.28 <0.001 -0.25 <0.001 <0.01 <0.01 -0.22 <0.01 -0.13

, Vol. 1, No. 1, Article . Publication date: May 2019.

A common mistake in data-driven software engineering

SI
N

#6
Egregious Labelling Errors!
Which should be labeled bug-fixing?

Selected randomly 400 commits; 10 independent developers
Each commit labelled by 3 experts. 2+ votes => bug fixes. 54% unanimous.
Meta-analysis of FP: (1) Substrings (2) Non-functional: e.g., changes to variable names (3) Comments
(4) Feature enhancements (5) Mismatch: e.g., “this isn’t a bug” (6) Features with unclear messages

False positive rate: 36%
False negative rate: 11%

Mockus, Votta. 2000. Identifying Reasons for Software Changes Using Historic Databases. ICSM. https://doi.org/10.1109/ICSM.2000.883028

…, Filkov, Devanbu. 2009. Fair and Balanced?: Bias in Bug-fix Datasets. FSE. https://doi.org/10.1145/1595696.1595716

SI
N

#6

On the Impact of Programming Languages on Code�ality 15

commits has many false positives, which must be factored into the results. A relatively simple 513

approach to achieve this relies on parameter estimation by a statistical procedure called the 514

bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled 515

with replacement the projects (and their attributes) to create resampled datasets of the same size. 516

Second, the number of bug-�xing commits bcommits⇤i of project i in the resampled dataset was 517

generated as the following random variable: 518

bcommits⇤i ⇠ Binom(size = bcommitsi , prob = 1 � FP) + Binom(size = (commitsi � bcommitsi), prob = FN)

519where FP=36% and FN=11% (Section 4.1). Finally, we analyzed the resampled dataset with Negative 520

Binomial Regression. The three steps were repeated 100,000 times to create the histograms of 521

estimates of each regression coe�cients. Applying the Bonferroni correction, the parameter was 522

viewed as statistically signi�cant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not 523

include 0. 524

4.3 Results 525

Table 6(b-e) summarizes the re-analysis results. The impact of the data cleaning, without multiple 526

hypothesis testing, is illustrated by column (b). Grey cells indicate disagreement with the conclusion 527

of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript, PHP, 528

and Python all fall outside of the “signi�cant” range of values, even without the multiplicity 529

adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the 530

impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values 531

slightly, but did not invalidate additional claims. However, FDR comes at the expense of more 532

potential false positive associations. Using the Bonferroni adjustment does not change the outcome. 533

In both cases, the p-value for one additional language, Ruby, loses its signi�cance. 534

Table 6. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept -1.93 <0.001 -1.93 <0.001 – – -1.96 – -1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *
log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *

C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – -0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go -0.08 – -0.1 0.098 0.157 1 -0.07 1 -0.04

Java -0.01 – -0.06 0.199 0.289 1 -0.03 1 -0.02
Co�eescript -0.07 – 0.06 0.261 0.322 1 0.09 1 0.04
Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript -0.43 <0.001 – – – – – – – –

Ruby -0.15 <0.05 -0.15 <0.05 <0.01 0.017 -0.12 0.134 -0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl -0.15 – -0.08 0.366 0.419 1 -0.05 1 0

Clojure -0.29 <0.001 -0.31 <0.001 <0.01 <0.01 -0.28 <0.01 -0.15 *
Erlang 0 – -0.02 0.687 0.733 1 0.01 1 -0.01
Haskell -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.2 <0.01 -0.12 *
Scala -0.28 <0.001 -0.25 <0.001 <0.01 <0.01 -0.22 <0.01 -0.13

, Vol. 1, No. 1, Article . Publication date: May 2019.

On the Impact of Programming Languages on Code�ality 15

commits has many false positives, which must be factored into the results. A relatively simple 513

approach to achieve this relies on parameter estimation by a statistical procedure called the 514

bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled 515

with replacement the projects (and their attributes) to create resampled datasets of the same size. 516

Second, the number of bug-�xing commits bcommits⇤i of project i in the resampled dataset was 517

generated as the following random variable: 518

bcommits⇤i ⇠ Binom(size = bcommitsi , prob = 1 � FP) + Binom(size = (commitsi � bcommitsi), prob = FN)

519where FP=36% and FN=11% (Section 4.1). Finally, we analyzed the resampled dataset with Negative 520

Binomial Regression. The three steps were repeated 100,000 times to create the histograms of 521

estimates of each regression coe�cients. Applying the Bonferroni correction, the parameter was 522

viewed as statistically signi�cant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not 523

include 0. 524

4.3 Results 525

Table 6(b-e) summarizes the re-analysis results. The impact of the data cleaning, without multiple 526

hypothesis testing, is illustrated by column (b). Grey cells indicate disagreement with the conclusion 527

of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript, PHP, 528

and Python all fall outside of the “signi�cant” range of values, even without the multiplicity 529

adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the 530

impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values 531

slightly, but did not invalidate additional claims. However, FDR comes at the expense of more 532

potential false positive associations. Using the Bonferroni adjustment does not change the outcome. 533

In both cases, the p-value for one additional language, Ruby, loses its signi�cance. 534

Table 6. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept -1.93 <0.001 -1.93 <0.001 – – -1.96 – -1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *
log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *

C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – -0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go -0.08 – -0.1 0.098 0.157 1 -0.07 1 -0.04

Java -0.01 – -0.06 0.199 0.289 1 -0.03 1 -0.02
Co�eescript -0.07 – 0.06 0.261 0.322 1 0.09 1 0.04
Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript -0.43 <0.001 – – – – – – – –

Ruby -0.15 <0.05 -0.15 <0.05 <0.01 0.017 -0.12 0.134 -0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl -0.15 – -0.08 0.366 0.419 1 -0.05 1 0

Clojure -0.29 <0.001 -0.31 <0.001 <0.01 <0.01 -0.28 <0.01 -0.15 *
Erlang 0 – -0.02 0.687 0.733 1 0.01 1 -0.01
Haskell -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.2 <0.01 -0.12 *
Scala -0.28 <0.001 -0.25 <0.001 <0.01 <0.01 -0.22 <0.01 -0.13

, Vol. 1, No. 1, Article . Publication date: May 2019.

On the Impact of Programming Languages on Code�ality 15

commits has many false positives, which must be factored into the results. A relatively simple 513

approach to achieve this relies on parameter estimation by a statistical procedure called the 514

bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled 515

with replacement the projects (and their attributes) to create resampled datasets of the same size. 516

Second, the number of bug-�xing commits bcommits⇤i of project i in the resampled dataset was 517

generated as the following random variable: 518

bcommits⇤i ⇠ Binom(size = bcommitsi , prob = 1 � FP) + Binom(size = (commitsi � bcommitsi), prob = FN)

519where FP=36% and FN=11% (Section 4.1). Finally, we analyzed the resampled dataset with Negative 520

Binomial Regression. The three steps were repeated 100,000 times to create the histograms of 521

estimates of each regression coe�cients. Applying the Bonferroni correction, the parameter was 522

viewed as statistically signi�cant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not 523

include 0. 524

4.3 Results 525

Table 6(b-e) summarizes the re-analysis results. The impact of the data cleaning, without multiple 526

hypothesis testing, is illustrated by column (b). Grey cells indicate disagreement with the conclusion 527

of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript, PHP, 528

and Python all fall outside of the “signi�cant” range of values, even without the multiplicity 529

adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the 530

impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values 531

slightly, but did not invalidate additional claims. However, FDR comes at the expense of more 532

potential false positive associations. Using the Bonferroni adjustment does not change the outcome. 533

In both cases, the p-value for one additional language, Ruby, loses its signi�cance. 534

Table 6. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept -1.93 <0.001 -1.93 <0.001 – – -1.96 – -1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *
log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *

C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – -0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go -0.08 – -0.1 0.098 0.157 1 -0.07 1 -0.04

Java -0.01 – -0.06 0.199 0.289 1 -0.03 1 -0.02
Co�eescript -0.07 – 0.06 0.261 0.322 1 0.09 1 0.04
Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript -0.43 <0.001 – – – – – – – –

Ruby -0.15 <0.05 -0.15 <0.05 <0.01 0.017 -0.12 0.134 -0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl -0.15 – -0.08 0.366 0.419 1 -0.05 1 0

Clojure -0.29 <0.001 -0.31 <0.001 <0.01 <0.01 -0.28 <0.01 -0.15 *
Erlang 0 – -0.02 0.687 0.733 1 0.01 1 -0.01
Haskell -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.2 <0.01 -0.12 *
Scala -0.28 <0.001 -0.25 <0.001 <0.01 <0.01 -0.22 <0.01 -0.13

, Vol. 1, No. 1, Article . Publication date: May 2019.

On the Impact of Programming Languages on Code�ality 15

commits has many false positives, which must be factored into the results. A relatively simple 513

approach to achieve this relies on parameter estimation by a statistical procedure called the 514

bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled 515

with replacement the projects (and their attributes) to create resampled datasets of the same size. 516

Second, the number of bug-�xing commits bcommits⇤i of project i in the resampled dataset was 517

generated as the following random variable: 518

bcommits⇤i ⇠ Binom(size = bcommitsi , prob = 1 � FP) + Binom(size = (commitsi � bcommitsi), prob = FN)

519where FP=36% and FN=11% (Section 4.1). Finally, we analyzed the resampled dataset with Negative 520

Binomial Regression. The three steps were repeated 100,000 times to create the histograms of 521

estimates of each regression coe�cients. Applying the Bonferroni correction, the parameter was 522

viewed as statistically signi�cant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not 523

include 0. 524

4.3 Results 525

Table 6(b-e) summarizes the re-analysis results. The impact of the data cleaning, without multiple 526

hypothesis testing, is illustrated by column (b). Grey cells indicate disagreement with the conclusion 527

of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript, PHP, 528

and Python all fall outside of the “signi�cant” range of values, even without the multiplicity 529

adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the 530

impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values 531

slightly, but did not invalidate additional claims. However, FDR comes at the expense of more 532

potential false positive associations. Using the Bonferroni adjustment does not change the outcome. 533

In both cases, the p-value for one additional language, Ruby, loses its signi�cance. 534

Table 6. Negative Binomial Regression for Languages (grey indicate disagreement with original work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept -1.93 <0.001 -1.93 <0.001 – – -1.96 – -1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *
log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *

C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – -0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go -0.08 – -0.1 0.098 0.157 1 -0.07 1 -0.04

Java -0.01 – -0.06 0.199 0.289 1 -0.03 1 -0.02
Co�eescript -0.07 – 0.06 0.261 0.322 1 0.09 1 0.04
Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript -0.43 <0.001 – – – – – – – –

Ruby -0.15 <0.05 -0.15 <0.05 <0.01 0.017 -0.12 0.134 -0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl -0.15 – -0.08 0.366 0.419 1 -0.05 1 0

Clojure -0.29 <0.001 -0.31 <0.001 <0.01 <0.01 -0.28 <0.01 -0.15 *
Erlang 0 – -0.02 0.687 0.733 1 0.01 1 -0.01
Haskell -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.2 <0.01 -0.12 *
Scala -0.28 <0.001 -0.25 <0.001 <0.01 <0.01 -0.22 <0.01 -0.13

, Vol. 1, No. 1, Article . Publication date: May 2019.

Bootstrap:
1) sample projects with replacement;
2) #bug-fixing commits generated as B*∼Binom(size=B,prob=1−FP)+Binom(size=C−B,prob=FN),
3) analyzed the resampled dataset with NBR. Repeat 100K times.

SI
N

#6

On the Impact of Programming Languages on Code �ality 17

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its
(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its
(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its
(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ ClojureC++

Clojure

Fig. 6. Predictions of bug-fixing commits as function of commits by models in Table 6(c-d) for C++ (most
bugs) and Clojure (least bugs). (a) (1-0.01/16%) confidence intervals for expected values on log-log scale.
(b) Prediction intervals for a future number of bug-fixing commits, represented by 0.01/16 and 1 � 0.01/16
quantiles of the NB distributions with expected values in (a). (c)–(d): translation of the confidence and
prediction intervals to the original scale.

the DesignPatternsPHP project: it has 80% false positives, while more structured projects such as 578

tengine have only 10% false positives. Often, the indicative factor was as mundane as the wording 579

used in commit messages. The gocode project, the project with the most false negatives, at 40%, 580

“closes” its issues instead of “�xing” them. Mitigation would require manual inspection of commit 581

messages and sometimes even of the source code. In our experience, professional programmers 582

can make this determination in, on average, 2 minutes. Unfortunately, this would translate to 23 583

person-months to label the entire corpus. 584

5.3 Project selection 585

Using GitHub stars to select projects is fraught with perils as the 18 variants of bitcoin included 586

in the study attest. Projects should be representative of the language they are written in. The 587

PHPDesignPatterns is an educational compendium of code snippets; it is quite likely that is does 588

represent actual PHP code in the wild. The DefinitelyTyped TypeScript project is a popular list of 589

type signatures with no runnable code; it has bugs, but they are mistakes in the types assigned to 590

function arguments and not programming errors. Random sampling of GitHub projects is not an 591

appropriate methodology either. GitHub has large numbers of duplicate and partially duplicated 592

projects [18] and too many throwaway projects for this to yield the intended result. To mitigate this 593

, Vol. 1, No. 1, Article . Publication date: May 2019.

On the Impact of Programming Languages on Code �ality 17

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its
(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its
(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its
(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ Clojure

3

6

9

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(a)

0.0

2.5

5.0

7.5

10.0

12.5

5.0 7.5 10.0 12.5
log of commits

lo
g

of
 b

ug
−f

ix
in

g
co

m
m

its

(b)

0

100

200

300

400

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(c)

0

200

400

600

0 200 400 600 800
commits

bu
g−

fix
in

g
co

m
m

its

(d)

language
C++ ClojureC++

Clojure

Fig. 6. Predictions of bug-fixing commits as function of commits by models in Table 6(c-d) for C++ (most
bugs) and Clojure (least bugs). (a) (1-0.01/16%) confidence intervals for expected values on log-log scale.
(b) Prediction intervals for a future number of bug-fixing commits, represented by 0.01/16 and 1 � 0.01/16
quantiles of the NB distributions with expected values in (a). (c)–(d): translation of the confidence and
prediction intervals to the original scale.

the DesignPatternsPHP project: it has 80% false positives, while more structured projects such as 578

tengine have only 10% false positives. Often, the indicative factor was as mundane as the wording 579

used in commit messages. The gocode project, the project with the most false negatives, at 40%, 580

“closes” its issues instead of “�xing” them. Mitigation would require manual inspection of commit 581

messages and sometimes even of the source code. In our experience, professional programmers 582

can make this determination in, on average, 2 minutes. Unfortunately, this would translate to 23 583

person-months to label the entire corpus. 584

5.3 Project selection 585

Using GitHub stars to select projects is fraught with perils as the 18 variants of bitcoin included 586

in the study attest. Projects should be representative of the language they are written in. The 587

PHPDesignPatterns is an educational compendium of code snippets; it is quite likely that is does 588

represent actual PHP code in the wild. The DefinitelyTyped TypeScript project is a popular list of 589

type signatures with no runnable code; it has bugs, but they are mistakes in the types assigned to 590

function arguments and not programming errors. Random sampling of GitHub projects is not an 591

appropriate methodology either. GitHub has large numbers of duplicate and partially duplicated 592

projects [18] and too many throwaway projects for this to yield the intended result. To mitigate this 593

, Vol. 1, No. 1, Article . Publication date: May 2019.

commit

bu
g-

fix
in

g
co

m
m

itsEgregious Labelling Errors!

Down with p-values
P-values are largely driven by # of observations [1].
Small p-values not necessarily practically important [2].
Practical significance assessed by model-based prediction intervals [3], which predict future commits.
Similar to confidence intervals in reflecting model-based uncertainty.
Differ in that they characterize plausible range of values of future individual data points.

Halsey, et al. 2015. The fickle P-value generates irreproducible results. Nature Methods. https://doi.org/10.1038/nmeth.3288

Colquhoun. 2017. The reproducibility of research and the misinterpretation of p-values. https://doi.org/10.1098/rsos.171085
Kutner, et al. 2004. Applied Linear Statistical Models. https://books.google.cz/books?id=XAzYCwAAQBAJ

SI
N

#6
No Relevance to RQ!

How many errors are affected by features of the language?

SI
N

#7
Uncontrolled Effects!

Developers influencing multiple
projects (45K developers, 10% of
them => 50% of the commits)

Some tasks, such as system
programming, may be inherently
more error prone than

Commercial vs opens source

Stars as a selection criteria for
projects

Premkumar
Devanbu

Vladimir
Filikov

Daryl
Posnett

Baishaki
Ray

UC Davis
41

A Large Scale Study of Programming Languages
and Code Quality in Github

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, Premkumar Devanbu
{bairay@, dpposnett@, filkov@cs., devanbu@cs.}ucdavis.edu

Department of Computer Science, University of California, Davis, CA, 95616, USA

ABSTRACT

What is the effect of programming languages on software qual-
ity? This question has been a topic of much debate for a very long
time. In this study, we gather a very large data set from GitHub
(729 projects, 80 Million SLOC, 29,000 authors, 1.5 million com-
mits, in 17 languages) in an attempt to shed some empirical light
on this question. This reasonably large sample size allows us to use
a mixed-methods approach, combining multiple regression model-
ing with visualization and text analytics, to study the effect of lan-
guage features such as static v.s. dynamic typing, strong v.s. weak
typing on software quality. By triangulating findings from differ-
ent methods, and controlling for confounding effects such as team
size, project size, and project history, we report that language de-
sign does have a significant, but modest effect on software quality.
Most notably, it does appear that strong typing is modestly better
than weak typing, and among functional languages, static typing is
also somewhat better than dynamic typing. We also find that func-
tional languages are somewhat better than procedural languages. It
is worth noting that these modest effects arising from language de-
sign are overwhelmingly dominated by the process factors such as
project size, team size, and commit size. However, we hasten to
caution the reader that even these modest effects might quite possi-
bly be due to other, intangible process factors, e.g., the preference
of certain personality types for functional, static and strongly typed
languages.

Categories and Subject Descriptors

D.3.3 [PROGRAMMING LANGUAGES]: [Language Constructs
and Features]

General Terms

Measurement, Experimentation, Languages

Keywords

programming language, type system, bug fix, code quality, empiri-
cal research, regression analysis, software domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 November 16âĂŞ22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
A variety of debates ensue during discussions whether a given

programming language is “the right tool for the job". While some
of these debates may appear to be tinged with an almost religious
fervor, most people would agree that a programming language can
impact not only the coding process, but also the properties of the
resulting artifact.

Advocates of strong static typing argue that type inference will
catch software bugs early. Advocates of dynamic typing may argue
that rather than spend a lot of time correcting annoying static type
errors arising from sound, conservative static type checking algo-
rithms in compilers, it’s better to rely on strong dynamic typing to
catch errors as and when they arise. These debates, however, have
largely been of the armchair variety; usually the evidence offered
in support of one position or the other tends to be anecdotal.

Empirical evidence for the existence of associations between code
quality programming language choice, language properties, and us-
age domains, could help developers make more informed choices.

Given the number of other factors that influence software en-
gineering outcomes, obtaining such evidence, however, is a chal-
lenging task. Considering software quality, for example, there are
a number of well-known influential factors, including source code
size [11], the number of developers [36, 6], and age/maturity [16].
These factors are known to have a strong influence on software
quality, and indeed, such process factors can effectively predict de-
fect localities [32].

One approach to teasing out just the effect of language prop-
erties, even in the face of such daunting confounds, is to do a
controlled experiment. Some recent works have conducted exper-
iments in controlled settings with tasks of limited scope, with stu-
dents, using languages with static or dynamic typing (based on ex-
perimental treatment setting) [14, 22, 19]. While type of controlled
study is “El Camino Real" to solid empirical evidence,another op-
portunity has recently arisen, thanks to the large number of open
source projects collected in software forges such as GitHub.

GitHub contains many projects in multiple languages. These
projects vary a great deal across size, age, and number of devel-
opers. Each project repository provides a historical record from
which we extract project data including the contribution history,
project size, authorship, and defect repair. We use this data to deter-
mine the effects of language features on defect occurrence using a
variety of tools. Our approach is best described as mixed-methods,
or triangulation [10] approach. A quantitative (multiple regression)
study is further examined using mixed methods: text analysis, clus-
tering, and visualization. The observations from the mixed methods
largely confirm the findings of the quantitative study.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

FSE’14, November 16–21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00

http://dx.doi.org/10.1145/2635868.2635922

155FSE 2014

CACM 2017

42

Correlation is not Causation

43

Result1 Some languages have a
greater association with defects than
others, although the effect is small.

 — Ray, Posnett, Filikov, Devambu

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that.
After you’ve not fooled yourself, it’s easy not to fool other scientists. You just have to be honest in a conventional way after that.

— R. Feynman, Cargo Cult Science, 1974

Correlation is not Causation

Sleeping with one's shoes on is strongly
correlated with waking up with a headache.

Therefore, sleeping with one's shoes on
causes headache.

Correlation is not Causation
“...They found language design did have a signicant, but modest effect on
software quality.”

“…The results indicate that strong languages have better code quality
than weak languages.”

“…functional languages have an advantage over procedural languages.”

2 Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek

However, large-scale hosting services for code, such as GitHub or SourceForge, o�er a glimpse29

into the life-cycles of software. Not only do they host the sources for millions of projects, but30

they also log changes to their code. It is tempting to use these data to mine for broad patterns31

across programming languages. The paper we reproduce here is an in�uential attempt to develop a32

statistical model that relates various aspects of programming language design to software quality.33

What is the e�ect of programming language on software quality? is the question at the heart of the34

study by Ray et al. published at the 2014 Foundations of Software Engineering (FSE) conference [26].35

The work was su�ciently well-regarded in the software engineering community to be nominated36

as a Communication of the ACM (CACM) Research Highlight. After another round of reviewing, a37

slightly edited version appeared in journal form in 2017 [25]. A subset of the authors also published38

a short version of the work as a book chapter [24]. The results reported in the FSE paper and later39

repeated in the followup works are based on an observational study of a corpus of 729 GitHub40

projects written in 17 programming languages. To measure quality of code, the authors identi�ed,41

annotated, and tallied commits which were deemed to indicate bug �xes. The authors then �t a42

Negative Binomial regression against the labeled data, which was used to answer the following43

four research questions:44

RQ1 “Some languages have a greater association with defects than others, although the45

e�ect is small.” Languages associated with fewer bugs were TypeScript, Clojure, Haskell,46

Ruby, and Scala; while C, C++, Objective-C, JavaScript, PHP and Python were associated47

with more bugs.48

RQ2 “There is a small but signi�cant relationship between language class and defects.49

Functional languages have a smaller relationship to defects than either procedural or scripting50

languages.”51

RQ3 “There is no general relationship between domain and language defect proneness.”52

Thus, application domains are less important to software defects than languages.53

RQ4 “Defect types are strongly associated with languages. Some defect types like memory54

errors and concurrency errors also depend on language primitives. Language matters more55

for speci�c categories than it does for defects overall.”56

Of these four results, it is the �rst two that garnered the most attention both in print and on social57

media. This is likely the case because those results con�rmed commonly held beliefs about the58

bene�ts of static type systems and the need to limit the use of side e�ects in programming.59

Correlation is not causality, but it is tempting to confuse them. The original study couched its60

results in terms of associations (i.e., correlations) rather than e�ects (i.e., causality) and carefully61

quali�ed e�ect size. Unfortunately, many of the paper’s readers were not as careful. The work was62

taken by many as a statement on the impact of programming languages on defects. Thus, one can63

�nd citations such as:64

• “...They found language design did have a signi�cant, but modest e�ect on software quality.” [23]65

• “...The results indicate that strong languages have better code quality than weak languages.” [31]66

• “...functional languages have an advantage over procedural languages.” [21]67

Cites Self
Cursory 77 1
Methods 12 0

Correlation 2 2
Causation 24 3

Table 1. Citation analysis

Table 1 summarizes our citation analysis. Of the 119 papers that were68

retrieved,1 90 citations were either passing references (Cursory) or69

discussed the methodology of the original study (Methods). Out of70

the citations that discussed the results, 4 were careful to talk about71

associations (i.e., correlation), while 26 used language that indicated72

e�ects (i.e., causation). It is particularly interesting to observe that73

1Retrieval performed on 12/01/18 based on the Google Scholar citations of the FSE paper, duplicates were removed.

, Vol. 1, No. 1, Article . Publication date: May 2019.

FSE

…I don’t understand why …use a Bonferroni correction, which is generally overly
conservative. Why not use a Benajamini-Hotchberg?…

…missing code and data…

…largest source of contrasting results…comes from the bootstrapping method.
This was clever. However, it relies on the really low bug-labeling accuracy data…a

larger sample of rated messages, with multiple raters, would be worthwhile…

ICSE

….Hence, the reanalysis actually confirmed the original conclusion…

…The current study produces essentially the same result … that
some of the language coefficients reported to be statistically

significant in the original paper, lose statistical significance now, given
some differences in operationalization or analysis…

…The paper appears politically motivated…

50

The first principle is that you must not fool yourself—and you are the easiest person to fool. So you have to be very careful about that.
After you’ve not fooled yourself, it’s easy not to fool other scientists. You just have to be honest in a conventional way after that.

— R. Feynman, Cargo Cult Science, 1974

51

1. Select project on features and not GH stars
2. Assume data is corrupt
3. Check for duplicates/clones
4. Syntactic techniques are error-prone
5. Use domain knowledge to question results
6. Avoid reliance on p-values
7. Automate all steps of analysis + document production
8. Share data and code on public repositories
9. Become (or marry) a statistician
10. Don’t trust, verify

GETTING EVERYTHING WRONG WITHOUT DOING ANYTHING RIGHT!
or

The perils of large-scale analysis of GitHub data

https://github.com/PRL-PRG/TOPLAS19_Artifact

Petr Celeste Emery Olga Jan52

Opinions presented in this talk are mine and mine alone, my co-authors may or may not agree, funding agencies likely will disapprove.53

GETTING EVERYTHING WRONG WITHOUT DOING ANYTHING RIGHT!

