
CHARLES UNIVERSITY IN PRAGUE

FACULTY OF MATHEMATICS AND PHYSICS

 Doctoral Thesis

 Jaroslav Gergič

 - Addressing On Demand Assembly and Adaptation
 Using a Runtime Intentional Versioning Engine

 Department of Software Engineering
: . . , .Advisor Doc Ing Petr Tůma Dr

Annotations

Title

Addressing On-Demand Assembly and Adaptation
Using a Runtime Intentional Versioning Engine

Author

Mgr. Jaroslav Gergič
e-mail: gergic@dsrg.mff.cuni.cz, phone: +420 606 376 218

Department

Distributed Systems Research Group, http://dsrg.mff.cuni.cz
Department of Software Engineering, Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Advisor

Doc. Ing. Petr Tůma, Dr.
e-mail: petr.tuma@dsrg.mff.cuni.cz, phone: +420 221 914 267

Mailing Address

Charles University in Prague, Dept. of SW Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic

Abstract
The World Wide Web has been changing rapidly in the past few years due to the emergence and
fast adoption of large variety of new internet-enabled devices: starting with web-enabled phones
through converged appliances, combining a PDA and a cell phone, to specialized internet tablets
and business productivity tools. This change is bringing many challenges into the process of
designing and developing both the thin-client (web-based) and thick-client (device-hosted)
applications and related services. The application and service providers are facing a trade-off
between the number of platforms and devices they are able to support, representing the size of the
potential market, and mounting costs tied to developing and supporting multiple variants of their
applications. There are several ongoing efforts taking place at various standardization
organizations and industry associations to address these issues. Some of the essential standards for
specifying and transporting device capabilities have been available for several years now, but so
far they have had only a limited impact on the way the actual applications and services are being
designed and developed. This work is trying to identify and explain the shortcomings of the
existing approaches and as a reaction proposes an application-centric framework designed
specifically to better manage the trade-off between the coverage and the cost. The main idea is
describing device capabilities (requirements) and application artifacts (provisions) using
semantically rich properties – mostly hierarchical classifications – and employing that semantical
information for implementing a best-effort (approximate) matching algorithm.

Keywords
multi-variant intentional versioning, multi-criterial constraining, variation points, class factories,
runtime composition and assembly, web applications, delivery context, provisioning, single
authoring of multi-modal applications, Composite Capability/Preference Profiles (CC/PP), User
Agent Profile (UAProf)

Revision 1160 (September 11, 2007)

Acknowledgments

This work builds on years of research and practical experience gained while working on
both research and commercial projects. The component versioning baseline stemming
from my work in the Distributed Systems Research Group at Charles University, Prague
was subsequently influenced and enriched by the research I was involved in during the
six years spent in the Human Language Technologies department of IBM T. J. Watson
Research Center in Prague and Yorktown Heights, NY. Years of practical experience
from various commercial projects taking place before and after my research period
helped me to attain the right perspective when considering usability and real-world
applicability of the information technology.

Before all I would like to thank to my advisor Petr Tůma for his relentless support and
advice throughout the entire process of research, design and authoring the thesis.
I would like to address special acknowledgment to Prof. František Plášil, who invited
me as a member to the Distributed Systems Research Group and allowed me to learn the
highest standards of academic research activity.

I would like to thank to all my former colleagues in IBM Research for wonderful
teamwork experience, inspiration and many ideas which enriched my work by helping
me to fully comprehend the problem domain I was trying to address. In particular, many
thanks to Jan Kleindienst, Ladislav Seredi, Tomas Macek and Vladimir Bergl.

I must also thank to all my former and current colleagues I have met during my work at
LCS International, Reuters and Ariba. Every project I have been working on so far has
been a vastly enriching experience which has helped to form the way I think and
approach problems.

Last, but definitely not least, I am deeply grateful to my parents and family for their
support and encouragement. Especially during the last year when I have been finishing
my work has had a disruptive impact on the family life and I am obliged to pay back to
my wife Jolana and daughter Anna in the months and years to come for their patience
and support.

Table of Contents
1 Introduction... 9

1.1 Application Domain..9
1.2 Versioning Domain...10
1.3 Usage Domain...11
1.4 Thesis Contributions... 11
1.5 Structure of the Thesis.. 12

2 Background..13
2.1 Case Studies.. 13

2.1.1Content Adaptation Legacy and Reality.. 13
2.1.2CATCH 2004... 15

2.2 Related Standards..18
2.2.1CC/PP and UAProf.. 18
2.2.2DELI and CC/PP Processing Specification..20
2.2.3Standards Stack Evaluation..21

2.3 Related Work.. 23
2.3.1Open Source Frameworks.. 24
2.3.2Commercial Frameworks... 26
2.3.3Related Research.. 28

2.4 Important Observations...32
2.4.1Metadata Consolidation..33
2.4.2Metadata Canonicalization...34
2.4.3Metadata versus Knowledge.. 35

2.5 Background Conclusion..39
3 Setting the Goals..41
4 Addressing the Goals...43

4.1 Design Considerations.. 43
4.1.1Functional Considerations..43
4.1.2Technical Considerations... 44

4.2 Possible Approaches... 45
4.2.1Web Ontology Language... 45
4.2.2Rule-Based Systems...47
4.2.3Ontology Definition Metamodel.. 47
4.2.4Concept Analysis... 48

4.3 Design Conclusion.. 49
5 The Versatile Framework.. 51

5.1 The Elevator Pitch...51
5.2 Conceptual Overview..52
5.3 Technical Overview.. 54
5.4 Versatile Properties...56
5.5 Delivery Context and Value Provider...59
5.6 Property Mappings..61
5.7 Query and Query Template ..63

5.7.1Property Predicate and Property Operator... 65
5.7.2Result Set and Resource Entry...70
5.7.3Query Semantics.. 71
5.7.4The Scoring Function...73
5.7.5Resource Provider.. 76

6 Conclusion... 79
6.1 Overview...79
6.2 Goals Evaluation...79

6.2.1Functional Aspects Evaluation...79
6.2.2Technical Aspects Evaluation.. 80

6.3 Related Work Evaluation..82
6.3.1Related Work Conclusion.. 86

6.4 Current Status..87
6.5 Alternative Applications... 88

 Appendices.. 89
 Index of Figures... 89
 Index of Tables.. 90
 Index of Examples... 90
 References..91

1 Introduction 9 of 95

1 Introduction
The World Wide Web has been changing rapidly in the past few years due to the
emergence and fast adoption of large variety of new internet-enabled devices: while the
.com1 era of the Internet was clearly dominated by the personal computers and the
browser wars2, the early years of the 21st century were signified by the emergence of the
mobile Internet which allows people to connect to the Internet using a wide range of
strikingly different devices. Nowadays, the users are accessing the same information
and services while in the office, at home or on the go and are expecting the service
providers to provide multiple variants of their applications specifically tailored to
different modes of operation.

The application and service providers are facing a trade-off between the number of
platforms and devices they are able to support, representing the size of the potential
market, and mounting costs tied to developing and supporting multiple variants of their
applications. There are several ongoing efforts taking place at various standardization
organizations and industry associations to address these issues. Some of the essential
standards for specifying and transporting device capabilities have been available for
several years now, but so far they have had only a limited impact on the way the actual
applications and services are being designed and developed.

This work is trying to identify the reasons, why the existing approaches have not
achieved a broader adoption and proposes an application-centric framework, aimed
specifically to better manage the trade-off between the coverage and the cost.

1.1 Application Domain

While most of the ideas discussed in the following chapters can be easily generalized to
cover a broader spectrum of applications, we keep the core chapters of this thesis
focused on a single application domain: the domain of multimodal web applications.
We believe that such an approach improves comprehensibility and by using a series of
related examples from the same application domain, the reader can more easily assume
end-to-end real life scenarios and gain better understanding on how the proposed
technologies can be applied in practice.

Multimodal web applications can be seen as a natural extension of ordinary web
applications. From the end user perspective, the applications are consumed using a
browser application accessing a particular web site; the only exception are voice
applications, where the end user is interacting via voice over the phone and the voice
browser is a part of the technical infrastructure hosted by the application provider
[VXML03]. From the technological perspective, multimodal applications share the
high-level architecture with regular web applications: a web browser on the client side,
a web server as a front-end to the server-side infrastructure, an application server to
implement the application logic and usually a relational database server for persistent
data storage.

1 The second half of 90's of the 20th century (approximately 1995 – 2000) when the Internet emerged
from the academia and became a mainstream, commercialized communication medium.

2 The head to head competition between Netscape and Microsoft for the dominance of the web browser
market.

10 of 95 1.1 Application Domain

What makes the multimodal applications different, is that there are multiple variants of
the application, allowing for different modes of interaction, depending on the client
device. For example a cultural/sports events program guide such as one described in
[ICSM2001] accessible using a web browser on a personal computer (PC), a web-
enabled cell phone and a phone using voice interaction (usually referred to as
Interactive Voice Response - IVR). Another example can be a unified
messaging/productivity application allowing to access e-mail, voice mail, calendar,
contacts and virtual fax inbox using a PC, smart phone or a PDA and via phone using an
automated voice assistant. In both cases, each of the incarnations of the application is
accessing the same data, implementing the same business logic and providing similar
end-user functions (pending the limitations of a particular modality), while the
requirements for the user interface design are strikingly different. Not only there are
technological distinctions in terms of markup languages consumed by each platform:
xHTML in case of PC versus xHTML Basic or WML in case of a web phone and
VoiceXML in case of an IVR; but there are also many other aspects like screen size and
resolution (or a presence of the screen at all), input capabilities: qwerty keyboard versus
a numeric phone key-pad or a presence of a pointing device. All these distinctions
require the application designer to consider alternative approaches to mapping the
functional requirements to the user interface artifacts and often lead to implementing
several different variants of the user-interface layer, or even multiple variants of the
entire application – the only common denominator being the database layer.

Such a multiplication of efforts is increasing the overall cost of providing multimodal
services and the lack of suitable methodology and tools may prohibit the service
providers from expanding the coverage beyond the mainstream devices or even from
entering the multimodal3 services market.

1.2 Versioning Domain

While author's former work ([JG99]) in the domain of software configuration
management has been trying to cover all the aspects of software component versioning
including version identification, revision and variant support, more recent effort started
to emphasize the important of using semantically rich properties for software versioning
[JG03]. This thesis evolves the idea further and while focusing primarily on supporting
variants and variation points in the application architecture and design. Following the
approach and using the framework described in the following chapters, an application
effectively becomes a template with pre-defined variation points and placeholders. The
template serves as a skeleton for the actual application which gets instantiated by
substituting the most appropriate components and resources in particular placeholders.

Another important aspect is that our former work was mostly concerned about
application design-time and build-time [JG99], more recently also deployment-time
assembly process [JG03]. This work is aiming solely at employing a versioning engine
at the application runtime, or better to say, to address the needs of those applications
which defer portions of their final assembly process until the application runtime. The
multimodal applications described in the section above are a prime example: they need

3 The multimodal applications as defined above are sometimes referred to as multi-channel applications
to emphasize the fact that each modality is used exclusively in a given point in time. This is to contrast
these applications to simultaneous multimodal applications which combine two or more different
modalities during a single user interaction – one of those modalities typically being the voice
modality.

1.2 Versioning Domain 11 of 95

to adapt to different client devices and user preferences (for example locale settings) and
it is hardly possible to deploy all the possible combinations of an application. Moreover,
there is the timig aspect adding to the complexity as well: It is only upon arrival of the
first HTTP request, which usually triggers the user session creation, that the application
can be tailored specifically for that particular user session, prior to the session creation,
it is impossible to determine the device capabilities and the user preferences. In addition
to that, certain properties can change even during the user session: the user can choose a
different user locale (language), change the screen orientation (portrait/landscape)
and/or switch the device audio on/off. All these changes can apply at any time during
the user session, which represents yet additional challenge which needs to be addressed
by the runtime versioning engine responsible for (re)configuring the application as
necessary, by choosing the most appropriate components and resources.

1.3 Usage Domain

We are aiming at the versioning domain from the application development perspective.
The focus point is how to facilitate the design and development of an end-to-end
application featuring a large number of variation points using the single authoring
approach [SA02], while stressing the ability to delay the final assembly until the
application runtime. This represents a requirement to provide a version-aware library of
software components and other artifacts together with the apparatus which takes the
actual runtime context of the application into account and retrieves the most suitable
variant of each artifact and substitutes it at the corresponding variation point. We are
trying to address the process of multi-variant application design applying the recursive
top-down approach: introducing a skeleton together with the core functionality tied to
the skeleton and a set of placeholders ready to pull-in the plug-in components and thus
instantiate many different variants of the application. This can be contrasted to the
bottom-up approach of a more traditional software component versioning perspective,
where we would deal with versioning of individual components and then the
possibilities to combine them together in a compatible way so that we end-up with a
consistent application.

1.4 Thesis Contributions

This thesis makes the following contributions to the research within the domain of
Computer Science:

● analysis and critical reflection of the related work and standards in the area of
multimodal web applications and web content adaptation

● definition of a generic object-oriented framework targeting the application
runtime assembly and adaptation tailored the application domain stated above,
while ensuring the following properties of the framework:
○ flexibility in terms of metadata sources used for assembly and adaptation
○ comprehensibility and steep learning curve for the application designers and

developers
○ enforcing best practices in terms of separation-of-concerns, modularity and

reusability
○ scalability from both the logical complexity as well as runtime performance

perspectives
● the framework has been designed with immediate practical usability mindset,

based on the author's comprehensive experience in the domain of interest

12 of 95 1.5 Structure of the Thesis

1.5 Structure of the Thesis

 In the three subsections above, we stated the context this work by defining the class of
applications we are targeting (1.1 Application Domain), the versioning aspects this
work is addressing (1.2 Versioning Domain) and the intended usage mode we are trying
to support (1.3 Usage Domain).

In the following chapter () we prepare the stage for a deeper discussion by going over a
set of case studies and motivational examples (2.1 Case Studies), followed by the
relevant standards established in domain of interest (2.2 Related Standards). Then,
based on the evaluation of the existing standards and technologies, we summarize our
observations and map the landscape of the problem area in section 2.4 (Important
Observations). In section 2.3 (Related Work) we look at how the shortcomings of the
standards-based technology stack are being addressed and how the gap remaining
between the standards stack and the application developer is being overcome. The
evaluation of alternative initiatives leads us to setting the goals of our own work (3
Setting the Goals). The chapter is concluding by discussion of the possible approaches
to fulfilling our goals (4 Addressing the Goals).

The chapter 5 (The Versatile Framework) presents the key deliverables of this work. We
start by describing the underlying concepts of the framework in section 5.2 (Conceptual
Overview). The abstract part is followed by the technical part describing the mapping of
the framework's abstract concepts to a concrete representations in the object-oriented
programming language (5.3 Technical Overview). All the major elements of the
technical representation are described in subsequent sections of the chapter; however,
due to readability reasons, the work itself presents only important aspects of each
element and the very technical details of the framework are separated into an API
reference manual Versatile 1.0 API Reference [VERSAPI], which is an integral part of
the work.

The last chapter (6 Conclusion) evaluates the framework presented in chapter 5 against
the goals set in section 3 and compares it to the alternative approaches presented in
chapter 2.3. We also briefly re-iterate the important aspects of the framework and hind
possible application beyond the scope defined the first chapter.

2 Background 13 of 95

2 Background
In this chapter, we go over a set of case studies and motivational examples. We also
discuss in more detail the standards and technologies relevant to the focus domain of
this thesis. Based on this research, we note some important observations and draw
conclusions which lead us to setting the goals and requirements, thus forming the design
guidelines for our own work.

2.1 Case Studies

2.1.1 Content Adaptation Legacy and Reality

Even though the Internet and the World Wide Web has always been a prime example of
applying open standards in practice, still there has been a need to adapt content
according to the capabilities of a particular end-user terminal – the web browser. There
have always been differences between the features implemented by different web
browser vendors and across the hardware and operating system platforms. The HTTP
protocol, the engine of the World Wide Web, allows the client devices to issue meta
data attached to every HTTP request in the form of HTTP headers. Some headers are
standardized by the HTTP protocol, however, vendor-specific extensions are allowed as
well.

The Examples 1 and 2 show the HTTP headers issued by Mozilla Firefox 2.0 and
Microsoft Internet Explorer 6.0 web browsers respectively. Not all HTTP headers are
used for content adaptation, some of them like Keep-Alive, or Cache-Control are used
for other purposes. Let us have a closer look a the HTTP headers which are used for
content adaptation most often:

● Accept – a list of MIME media types4 consumable by the web browser
● Accept-Charset – a list of character encodings consumable by the web browser
● Accept-Language – a list of preferred user locales5 (this is rather a user's

preference than browser capability)
● User-Agent – information about the web browser, it usually contains a name and

version, it is quite common to include operating system and relevant runtime
libraries information

4 MIME (Multipurpose Internet Mail Extensions) media types are managed by IANA (Internet
Assigned Numbers Authority) [MIMEMT]

5 Locale – typically a language and optionally also country ISO codes, see also [LC142]

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
 rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4

Accept: text/xml, application/xml, application/xhtml+xml,
text/html;q=0.9, text/plain;q=0.8, image/png, */*;q=0.5

Accept-Language: cs,en-us;q=0.7,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cache-Control: max-age=0
Example 1: Mozilla Firefox 2.0 HTTP Headers Example

14 of 95 2.1 Case Studies

Out of the list above, the Accept header was originally meant to be the primary factor to
be taken into account for the content adaptation, however, as you can see from the real
world samples, the actual web browsers use this field to list some sort of examples
terminated by the magic “*/*” content type which means: I accept just anything.

Due to the above, another HTTP header has established itself as the primary content
adaptation factor: the User-Agent header. According to the standard [HTTP11]: “The
field can contain multiple product tokens and comments identifying the agent and any
subproducts which form a significant part of the user agent “ Product tokens take the
form of name/version and should be listed in order of their significance. Example 3
below Shows an example taken from the HTTP specification. Looking at the real world
browsers (Example 1 and Example 2), it is clear that the standard is not being followed
very strictly and the User-Agent header is beging formatted in many different ways,
which makes parsing and interpreting the header values quite difficult.

In addition to the non-standard format, there are other serious drawbacks linked to the
fact that the User-Agent header has become the major (and many times the only) factor
used for content adaptation: the content providers need to know all its clients in advance
in order to build the feature matrix (web-browser -> feature set mapping). They also
need to keep updating this matrix as new devices appear on the market and and the web
browsers evolve. This was not so much an issue during the 90's as there were only two
major browsers on the market (Netscape and Microsoft Internet Explorer), however,
with the growing number of browsers (Opera, Safari) and especially, with all the variety
of web-enabled phones and other mobile devices, this simple mechanism becomes a
serious bottle-neck and in fact creates a barrier-of-entry for all the newcomers to the
browser market as the web-servers are unable to serve content properly to unknown user
agents.

In fact, the issues with this approach dates back to the late 90's: when Netscape
introduced frames6, the content providers started using the User-Agent header to
determine whether a framed or non-framed version can be served to the client. The
keyword they were looking for was “Mozilla”. Due to this fact, even today most of the
web browsers on the market claim they are Mozilla, even though they are not, for
compatibility reasons. (this technique is known as cloaking).

6 At time a unique extension to HTML markup language allowing to split a web page into several
independent regions

User-Agent: CERN-LineMode/2.15 libwww/2.17b3

Example 3: User-Agent header according to the HTTP 1.1 standard

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
.NET CLR 1.1.4322; .NET CLR 2.0.50727)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, application/x-shockwave-flash, */*

Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive
Example 2: Microsoft Internet Explorer 6.0 HTTP Headers Example

2.1 Case Studies 15 of 95

Usage of the User-Agent header and other HTTP headers mentioned above still remains
prevalent form of content adaptation on the World Wide Web today. There are several
ongoing efforts to improve the situation, yet none of them has got sufficient traction in
the community so far. We briefly introduce the most promising standards-based attempt
to address the content adaptation needs in section 2.2.1 of this chapter.

2.1.2 CATCH 2004

The Converse in Athens, Cologne and Helsinki (CATCH) 2004 was a research project7
whose objective was to develop a multilingual, multimodal, conversational system with
a novel unifying architecture across devices and services [CATCH2004]. The author of
this thesis was actively involved in the project regarding the design and development of
its server-side infrastructure (publications [ICSM2001], [IIWAS2001] and [SEKE02];
see also [ICMI02] and [IWANLIS01]); some design aspects of the CATCH 2004
multimodal framework have inspired the versioning engine described in this thesis.

In CATCH 2004, we were designing and developing a multimodal framework validated
by a series of proof-of-concept applications used to demonstrate its capabilities. Its
earlier phase included a cultural events information service for cities of Athens,
Helsinki and Cologne, the later phase was mostly focused on to the Olympic games
information service using real data gathered in the course of preparations for the 2004
summer Olympics in Athens. The modalities supported by the framework and
subsequently by the pilot applications were three single-modal channels: PC-based web
browser (HTML), web-enabled phone (WML8) and voice interaction over phone using
natural language understanding (NLU) capabilities. There were also two dual-mode
channels involving combinations of HTML or WML with VoiceXML9 to allow for
simultaneous interaction using both visual and voice web browsers.

Given the requirement to support multilingual as well as multimodal variants of each
application we needed to organize components and resources alongside these two
orthogonal axes. As a research project, we did not need to deal with the real-world
variety of the client devices, we only needed one representant of its class for each
modality, but still there was a need to identify the devices and map them on the
modality axis in a generic and an extensible way. To actually implement the modality
dimension, we took an inspiration in the other axis: the language/locale axis and its
implementation in the Java programming language.

Java uses a triplet10 (language, country, variant) to represent information about user's
locale. Not all attributes of the triplet are mandatory, it is for example quite common to
specify only the user's language, but if needed, more details can be provided to properly
render user interface according to the user's regional settings. In addition to the
standards-based locale descriptor, there is a clever best-effort algorithm implemented as
a part of the Java Standard Library to locate the most appropriate resources given

7 Work partially funded by the European Union, through the research project IST-1999-11103
CATCH2004 as a part of the IST (Information Society Technologies) research program.

8 [WAP20] - an Open Mobile Alliance (OMA) standard for web-enabling cell-phones and other mobile
terminals

9 [VXML03] - a W3C standard markup language for voice interaction
10 [LC142] - java.util.Local serves as a locale descriptor (language, country, variant), languages and

countries must adhere to their respective ISO language and country codes, variants are implementation
specific.

16 of 95 2.1 Case Studies

a particular locale information11. Given the resource name, the user's locale and the
system default locale information, the algorithm searches in the following sequence:

1. resource name + language + country + variant
2. resource name + language + country
3. resource name + language
4. resource name + default language + default country + default variant
5. resource name + default language + default country
6. resource name + default language
7. resource name

The above fall-back strategy combines relaxing a given set of constraints (going from
very specific to more generic locale) with almost assured availability of the resources
for system default locale. This allows for sharing locale-dependent resources where
appropriate (for example on the language level) while providing more specific data
where needed (e.g. country-dependent date or currency formatting). The algorithm also
allows to implement fail-over in case the required resources are missing for a particular
locale. In fact, the algorithm defines a classification hierarchy (taxonomy) of the Java
locale triplets. When relaxing a constraint (assuming a fully specified triplet given as the
constraint) it bubbles up the taxonomy from a bottom leaf node up to its root, when
searching for a partially-specified locale, it may start from one of the inner-nodes of the
taxonomy. Figure 1 below demonstrates the hierarchical classification idea drawing a
taxonomy tree using a small subset of potential Java locale triplets.

As mentioned earlier, we took the way Java treats the locale-specific resources as a
template to implement the second axis: the modality-specific resources. We defined the
modality triplet:

1. modality family (GUI versus SPEECH)
2. modality name (a markup name like HTML, WML or VXML)
3. modality flavor (version of a particular markup)

Examples of modalities in their textual form are: GUI/HTML/4.0 or SPEECH/VXML/2.0.
Figure 2 on page 17 shows the modality taxonomy as employed throughout the CATCH
2004 project. We were using HTTP header attributes (User-Agent and Accept, described
in section 2.1.1 above) to derive modality triplet from incoming HTTP requests. We
implemented an algorithm, similar to the one described above for the Java locales, to
search for the most appropriate resources and components, while being able to share as
11 [RB142] - java.util.ResourceBundle implements the lookup algorithm for localized resources.

Figure 1: A snippet of the Java locale taxonomy

/

en fr

en_USen_GB
fr_FR fr_CA

en_US_WIN en_US_MAC

en__POSIX

_CZ

cs

cs_CZ

2.1 Case Studies 17 of 95

much as possible between the different variants of the application. When configuring
class factories, we tagged the implementation classes by modality information and the
modality-aware class factory then picked-up the nearest best-match to the modality
information provided in the incoming request.

When storing and retrieving locale-and-modality sensitive resources, we had to have
them organized using both dimensions. We chose the locale dimension to be the
primary one (in order to avoid mixing different languages on the same “screen”) and
the modality dimension as the secondary. Static resources were stored in locale-specific
XML files and each resource was tagged by the most-generic modality it can serve. It
allowed us to share a large number of resources between all the modalities while
accommodating the user interface to a particular modality where needed. Similar
approach was applied to the resources dynamically pulled out of the database12.

The Example 4 shows a snippet of the static resource file. Please note the differences
between the modalities: a PC web browser (assuming GUI/HTML/* modality) falls back
to the default variant, a web phone retrieves a special shortened label to better fit a small
screen, while the speech modality requires a whole sentence to prompt the user for the
data entry.

The CATCH 2004 multimodal framework featuring just two attributes (properties) in its
delivery context , both being shallow/fixed-depth taxonomies, seems to be very simple;
yet it turns out to be very powerful and efficient in applying the single-authoring13
approach to developing a family of variants of the web application – a multimodal
12 The data model had to be extended to accommodate both the locale and modality information and the

cultural/sport events data providers had to extend their listings accordingly.
13 Developing all the application variants together within one framework as opposed to developing each

variant separately as a separate project, possibly using different tools and having different teams of
people involved.

Figure 2: The modality taxonomy as used in CATCH 2004

/

SPEECH

SPEECH/VXMLGUI/HTML

SPEECH/VXML/1.0 SPEECH/VXML/2.0GUI/WML/1.2

GUI

GUI/WML

GUI/WML/1.1 GUI/HTML/3.2 GUI/HTML/4.0

<message name="eventType">
 <!-- the default content (untagged) -->
 Select the event type:

 <!-- following sub-entry is content for all the GUI/WML/* -->
 <alt modality="GUI/WML">Event Type:</alt>

 <!-- any speech modality uses the following sub-entry -->
 <alt modality="SPEECH">Please say the event type.</alt>
</message>
Example 4: An example of modality-tagged resources

18 of 95 2.1 Case Studies

application. It is a well-known fact, that to take a successful research prototype to the
streets means over eighty percent of work still needs to be done. While keeping the
ideas introduced in this section in mind, let us move on to see how these can be
generalized to reach the point of practical applicability in the real-world environment.

2.2 Related Standards

2.2.1 CC/PP and UAProf

In this section, we briefly introduce the existing standards-based technology stack, built
partly in a response to the issues with using the User-Agent and Accept HTTP headers
for the purpose of content and application adaptation on the World Wide Web, as
discussed in section 2.1.1. The majority of the issues related to using the User-Agent
header stems from the fact that the content adaptation is implicit: given a device
identifier, the server implicitly assumes the device properties. The only piece of
information which needs to be attached to a request is the device identifier, on the other
hand, the recipient of the request must maintain the implicit knowledge. The idea
underlining the standards-based technology stack is to describe the device capabilities
explicitly, by describing the device capabilities feature by feature so that the content
providers and application authors do not need to care about a particular device but rather
focus on the set of capabilities of the device.

The technologies introduced by World Wide Web Consortium (W3C) and subsequently
by Open Mobile Alliance (OMA) are aiming to solve the content adaptation problem by
employing the very same metadata technologies which lay the foundations of the
Semantic Web activity [SEMWEB], [SEMWEBVIS]. The heart of the semantic web is
built around the Resource Description Framework (RDF) [RDF04], an XML-based
system for annotating existing (web) resources with external metadata. RDF uses
statements in the form of triplets (subject, predicate, object) to express facts about
resources. Resources are uniquely identified using URIs14 and correspond to the subject
in the triplet above. Predicates are named properties, these also must have a URI to
prevent ambiguity. Objects are property values, these can be other resources (to express
relationships between resources) or literal values (strings, numbers and other XML
primitive data types). RDF also allows properties to have multiple values, this is
achieved using two special RDF types: Bag (an unordered set of values) and Seq (an
ordered list of values).

W3C has developed Composite Capabilities/Preference Profiles (CC/PP) framework
[CCPP04], which builds on RDF and introduces concept of device profiles composed of
several components each component being a logical grouping of related attributes.
CC/PP framework also introduces the defaults concept – the ability to partially override
a subset of component attributes by specifying their values while referring to the
existing “default” attribute set via URI for retrieval of non-overridden values. The
defaults concept is important with the respect to network utilization and caching: the
aim is to prevent the entire device profile being transferred over and over with every
HTTP request.

14 URI – Uniform Resource Identifier (please refer to http://www.w3.org/Addressing/)

2.2 Related Standards 19 of 95

While CC/PP defines the framework for working with the device and preference
profiles, it does not define any particular vocabulary (a set of components and their
attributes) nor does it define a particular protocol for transporting a CC/PP profiles and
profile references. This is where the OMA15 comes in with its User Agent Profile
(UAProf) specification. [UAP06] UAProf builds on CC/PP and provides a standardized
vocabulary of components and their attributes expressed in terms of an RDF Schema.
Please refer to on page for an extract of the HardwarePlatform component from the
Nokia N95-3 smart phone16 UAProf profile. Other standard UAProf components include
SoftwarePlatform, NetworkCharacteristics, BrowserUA, WapCharacteristics,
PushCharacteristics and MmsCharacteristics. They are expressed in a similar way as
the HardwarePlatform in . A UAProf profile can also include vendor-specific extension
components in addition to the standard components defined by the UAProf RDF
Schema governed by Open Mobile Alliance.

15 OMA – Open Mobile Alliance – a consortium of mostly mobile operators, device and network
suppliers

16 For a complete UAProf profile cited in this work please refer to
http://nds.nokia.com/uaprof/NN95-3r100.xml

Example 5: Hardware Platform component of Nokia N95 phone UAProf profile

20 of 95 2.2 Related Standards

UAProf standard defines two protocols for exchanging the profile information: one
based on WSP17 and more importantly the new WAP 2.0-compliant protocol called
Wireless Profiled HTTP (W-HTTP). W-HTTP is a CC/PP-aware extension of HTTP 1.1
protocol. The protocol defines several extension HTTP headers (x-wap-profile, x-wap-
profile-diff, x-wap-profile-warning) and their semantics required for transporting CC/PP
profiles and their fragments over HTTP and also the resolution rules needed to merge
the profile and optional profile fragments (overrides) into a single consolidated profile
on the server side.

2.2.2 DELI and CC/PP Processing Specification

While CC/PP together with UAProf provides sufficient and complete resources for
device manufacturers and network infrastructure providers, it comes short when
targeting the application providers and developers. As described above, the standard
defines the data structures, protocols and semantics (resolution rules), but does not
provide any application programmer's interface (API). This gap has been filled by DELI
– Delivery Context Library [DELI], an open source library developed originally by HP
Labs18, and later on by a Java extension API developed as a part of the Java Community
Process under Java Specification Request (JSR) #188 called Composite
Capability/Preference Profiles (CC/PP) Processing Specification [JSR188]. It is
interesting to note that some people were involved in both activities, for example Mark
H. Butler of HP Labs who was originally leading the development of DELI also co-
authored JSR188, so that the later has been significantly influenced by DELI.

It is important to note, that there is a new RDF query language [SPARQL] currently
under development in W3C, which, once approved as a W3C Recommendation, can
potentially replace the simple getter APIs like DELI and JSR188. The SPARQL
language allows quite advanced RDF queries (it is in some sense comparable to SQL)
and also uses XQuery [XQUERY] functions and other functions like regular
expressions to express constraints and implement low-level data manipulation of
individual RDF literal values.

17 WSP – Wireless Session Protocol – a part of the original WAP 1.0 protocol stack which required a
special WAP gateway to mediate all communication between the WAP devices and eventual content
providers. This requirement has been removed in WAP 2.0 where the WAP gateway (if present)
serves as a standard HTTP proxy.

18 Hewlett-Packard's advanced research division of (http://www.hpl.hp.com/)

Figure 3: Device Capabilities / User Preferences Technology Stack

XML

RDF

HTTP
Headers

(User-Agent,
Accept-Charset)

CC/PP

OMA UAProf

Applications

DELI / JSR-188

2.2 Related Standards 21 of 95

2.2.3 Standards Stack Evaluation

The technology stack, backed by the various standardization organizations19 we
presented throughout the above sections and summarized on Figure 3, page 20, servers
as both the base and the benchmark in this thesis as it represents the gold-standard in
the area of our interest:

● many of the alternative solutions build directly on the standards stack; or they
are at-least influenced-by or partly dependent-on the standard stack.

● we use the standards stack to compare these alternative solutions and in turn also
our own work to the standards stack in order to measure the added value of
a particular framework when comparing it to the common and readily available
basic solution.

First of all, we proceed with an evaluation of the standards stack itself in order to reveal
why there is still a need of research and development in the area even despite the
existence of the relevant standards.

Mak H. Butler, involved in the design of the two standards-based frameworks briefly
introduced in section 2.2.2, subsequently published several papers ([CCPPIIFD],
[SEMHYPE], [BARRIERS], [IDDWG05]) reflecting on the practical experience and
feedback gathered while evangelizing DELI and its underlying semantic web
technologies (UAProf, CC/PP and RDF). Some of these articles became frequently cited
and even considered slightly controversial, for example Is the Semantic Web Hype?
[SEMHYPE] or from the perspective of this thesis extremely valuable Barriers to the
real world adoption of Semantic Web technologies [BARRIERS].

The later article is trying to summarize all the various reasons behind slow adoption of
the semantic web technologies including the difficulties in practical adoption of the
standards-based technology stack described in the section above. Let us cite the reasons
and briefly summarize (and comment on) those especially relevant to this thesis:

1. “Producers, consumers and beneficiaries” – in case of UAProf profiles, the
producers of metadata are device vendors, while the consumers (and
beneficiaries) are the application providers. There is insufficient business
interest of the device vendors to sufficiently invest in metadata and so that they
fully satisfy the needs of the application providers.

2. “Classifying information is inherently hard” and “Metadata is inherently
biased” – even in cases of business neutral metadata, it is often difficult to settle
on a standardized vocabulary, in case the business interests of different parties
are not aligned, it is almost an impossible task to achieve sufficient consistency

3. “People are inherently fallible” – people do make errors and “The Complexity
of RDF/XML” – it is even easier to make a mistake, if a technology is too
complex, still after several years of UAProf usage by mobile devices vendors,
there are instances of device profiles around with basic syntax errors.

4. “Supporting multiple vocabulary versions” – with every incompatible new
revision of the UAProf vocabulary, the corresponding RDF Schema XML
namespace changes, strictly speaking, such a namespace change means (in terms

19 XML, RDF, CC/PP backed by W3C, UAProf by OMA and JSR 188 by the Java Community Process
consortium

22 of 95 2.2 Related Standards

of RDF) that even if the semantics of a particular attribute remains unchanged,
the attributes have a different RDF type – they are incompatible and
incomparable. In theory, one can built an ontology, using constructs of the
OWL20, to explicitly unify such attributes and make them semantically
equivalent. In practice, employing an ontology language for solving such a
simple issue is often considered an overkill and often leads to a decision to
blindly ignore the namespaces at all, which in turn effectively disables profile
validation.

5. “Supporting multiple vocabularies” – again, similar to the above, in order to
implement interoperability between different vocabularies, possibly defined by
different entities, there is a need to reach beyond the UAProf / CC/PP / RDF
stack and use yet an additional tool or a language to provide mappings between
semantically equivalent attributes. In case of UAProf, this is namely a concern
for extension profile components which are not governed by OMA as a part of
the UAProf standard, or which at some point are introduced as custom
extensions and later become a part of the standard.

The observations listed above provide an excellent insight into why the semantic web
paradigm as a whole and UAProf in particular has not taken off as expected. Let us add
some additional notes regarding the UAProf, or better to say, its API exposed to the
application developer via DELI or JSR188. The Example 6 on page 22 shows a snippet
of an XSLT template given as an example in the DELI documentation, looking at the
code snippet above and considering the complexity of the technology stack behind it,
one can easily come to a conclusion that the result comes a bit short of expectations
from the application developer's point of view:

1. The UAProf profile is essentially represented as a hash table, a key being
the concatenation of a UAProf component name and an attribute name. The
question is, why all the complexity of the semantic web, with its ability to
express typed relationships between universally identifiable entities, is needed in
order to represent such a simple collection of facts. On the other hand, it is the
matter of fact that this kind of simplicity is exactly what the developer wants, as
his/her focus is the application development, not the meta-modeling.

20OWL - OWL Web Ontology Language, a W3C Recommendation [OWL04]

<?xml version="1.0"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:param name="deli-capabilities"/>
 <xsl:template match="/">
 <xsl:if

 test="contains($deli-capabilities/browser/CcppAccept/li,'wml')">
 <xsl:call-template name="wmldevice"/>
 </xsl:if>
 <xsl:if

 test="not(contains($deli-capabilities/browser/CcppAccept/li,'wml'))">
 <xsl:call-template name="htmldevice"/>
 </xsl:if>
 </xsl:template>
 ...
</xsl:stylesheet>
Example 6: A UAProf aware XSLT stylesheet (from DELI documentation)

2.2 Related Standards 23 of 95

2. There are no additional higher-level constructs on the top of the simple hash
table concept to further facilitate application development. The different variants
of an application need to be implemented via traditional if-then-else approach
which can severely pollute the application code. Neither DELI nor JSR188
provide any means for clustering devices into classes and sub-classes according
to their similarity given a sub-set of relevant UAProf attributes. Moreover, given
the fact that both Java APIs mentioned above return raw (non-canonicalized)
attribute values, it is the responsibility of the application developer to account
for all vendor-specific alternatives: while investigating the existing device
profiles, we encountered that a single attribute value can have many syntactical
variations depending on a device vendor. We discuss this issue in further detail
in following sections..

Overall, we can claim that the standards-based technology stack as depicted on Figure
3, page 20, despite all its depth and complexity, still provides only a raw basic API
which, if used directly, does not fully meet the needs of the application providers and
developers: in order to separate the versioning code from the business logic, allow for
similarity-based device clustering (to foster artifact re-use across variants), implement
semantical mapping and synthesis (merge) of information from UAProf and non-
UAProf sources: there is still need to support “legacy” devices as most of the desktop
browsers today and even some mobile devices like PDAs do not support CC/PP and
UAProf and rather stick to custom vendor specific HTTP headers, and therefore one still
needs to develop an additional layer on top and aside of the existing technology stack.

2.3 Related Work

Majority of the research and development in the domain of interest took place between
the years 1999 and 2003 the issue was being systematically addressed primarily in
a reaction to the emergence of web-enabled cell-phones based on the Wireless
Application Protocol [WAP20] in 1999. This era concluded by the standardization
efforts discussed in section 2.2 above.

The issue was, that the hype around the mobile internet came ahead of its time: the early
devices were too compromised in terms of computing power and user interface features
like screen size, lack of color displays and lack of multimedia features. The speed and
bandwidth of the mobile networks at the time also represented a serious bottleneck. As
a result of this, the end-user experience was negatively affected and the idea of mobile
internet as a whole did not take-off quite well as expected. In turn, as the interest in the
content adaptation faded away, the standards technology stack did not have a chance to
prove itself in practice and get incrementally refined and improved from the usability
perspective by sufficient number of practical applications.

It has taken another five years until the mobile networks and mobile terminals have
evolved so that the user experience has improved sufficiently and the idea of mobile
internet and contend adaptation is once again becoming a hot topic. Nowadays, many
application and content providers21 are starting to provide a lightweight mobile version
of their services in order to meet the growing demand and market potential. These
mobile versions are typically developed separately from their full-fledged PC versions,

21 Let us name just a few examples here: Yahoo, Google with mobile versions of their e-mail
applications and productivity applications, Reuters, BBC and International Herald Tribune as typical
examples of content providers.

24 of 95 2.3 Related Work

which is apparent from a different release cycle and the fact that their feature-set,
understandably limited, sometimes suffers from inconsistencies not present in their PC
counterparts.

In this section, we are trying to map the landscape of the development in the domain of
interest which which has been taking place more recently, in general taking place past
the standardization efforts described in section 2.2; or which reflects on the standards
technolog stack by attempting to extend it further to make it more practically usable.
Another summary of related work from the standardization effort perspective compiled
recently by the W3C Device Independence working group can be found of W3C
website [DIDCO06]. Surprisingly, besides the standards discussed in section 2.2, the
document only mentions WURFL – the subject of the following subsection.

Comparison of our work and the existing standards (section 2.2) as well as related work
(section 2.3) is discussed in the Conclusion chapter (6).

2.3.1 Open Source Frameworks

WURFL

WURFL (Wireless Universal Resource File, [WURFL]) is an alternative approach
trying to address the content and application adaptation in the sub-domain of mobile and
wireless devices. In fact, it builds on the principle of unique device identification using
the User-Agent HTTP header, as described in section 2.1.1, while leveraging the
richness of the information provided by the existing UAProf profiles. WURFL is an
XML-based repository of known devices' profiles. Together with the repository itself,
there is a library providing an API allowing to:

1. resolve a given User-Agent string to a repository Device ID
2. given a Device ID to query attributes (capabilities in WURFL) of the device

The value proposition of WURFL is, that while loading profiles into the repository, the
profiles are checked for syntactical and factual errors and these are corrected. In
addition to that, the WURFL profiles can contain additional attributes which are not
represented in UAProf but are often needed by the application developers. The profile
repository is maintained centrally in a collaborative manner so that the effort to
maintain and update the database as new devices emerge on the market is not replicated
by each application provider separately.

Closely linked to WURFL, there is WALL (the Wireless Abstraction Library) provided
by the same community. WALL is an extension JSP tag library22 allowing the
application developers to write their mobile application using a unified markup
language abstracting away from the incompatibilities between various devices. WALL
library leverages WURFL to detect actual devices capabilities and emits a markup
suitable for a particular device.

The major advantages of WURFL and WALL are clearly their simplicity and ease of
use from the application developer's perspective – one does not need to care about the
complexity of the semantic web and UAProf nor to install and manage an
implementation of CC/PP. There is only a need to install a single Java library and keep
updating (downloading) the device repository on regular basis. Using WURFL, the

22 JSP – JavaServer Pages, an integral part of the J2EE platform, http://java.sun.com/products/jsp/

2.3 Related Work 25 of 95

users are getting the functionality almost equivalent to DELI or JSR188 at much lower
initial investment and enjoying much steeper learning curve. If the application domain
is limited to mobile devices and it is a web-based application (not a J2ME23
application), one can potentially take an advantage of WALL thus effectively
developing a single common code base for all variants of the application.

The disadvantages of the WURFL and WALL are their sole focus on the mobile
wireless devices. The WALL library is limited to the common feature subset across all
devices: every WALL JSP tag must be possible to translate into a markup construct of a
particular device, so that it is insufficient in cases when a broader set of devices is needs
to be targeted. Using solely WURFL, without applying WALL, is functionally close to
employing one of the CC/PP APIs mentioned in the previous section (DELI or
JSR188): except the profile data cleanup executed when loading a new profile into the
WURFL repository (an added value when comparing to CC/PP), the other reservations
discussed in the previous section do apply to WURFL as well.

Capability Classes

The concept of capability classes [CAPCLASS], [CAPPROF] reflects on the authoring
difficulties when authoring applications with the use of CC/PP and UAProf. The author
is trying raise the level of abstraction by avoiding the direct usage of CC/PP attributes
combined with (possibly) nested if/then/else statements as depicted on Example 6 on
page 22. The level of abstraction is raised by defining a set of capability classes, each
capability class being defined using a set of constraints over the existing CC/PP
attributes of the device profile. Examples of capability classes are: smallScreen,
largeScreen, jpegcapable, wapenabled, color, blackandwhite, colorlesswap, smallbw.
Each capability class is defined by constraining (=, <, <=, >=, contains, not, true) one
or more CC/PP attributes. At runtime, the constraints are applied to the device's profile
which in turn returns a set of device capabilities, i.e., a set of capability classes the
device belongs to. Then, the application author can adapt the content based on the set of
capabilities rather than reasoning over the raw CC/PP attributes.

It is interesting to note, that the capability classes do not constitute any explicit
hierarchy (sub-classing). Data analysis techniques like concept analysis (4.2.4) would
need to be applied to the capability classes definitions to discover patterns and establish
the capability class hierarchy implied by the set of defining constraints.

The capability classes were actually implemented as an experimental feature of DELI
library [DELI], unfortunately, the idea was not taken into account in the JSR 188
specification [JSR188].

23 J2ME – Java 2 Platform, Micro Edition, java.sun.com/javame/index.jsp

26 of 95 2.3 Related Work

2.3.2 Commercial Frameworks

Volantis Mobile Content Framework™

Volantis Mobile Content Framework [VOLANTIS02], [VOLANTIS07] represents an
example of a commercial product targeted at the same application domain as WURFL
described above. In fact, despite being much more comprehensive in its feature set, it
shares many of the basic ideas of WURFL:

● it also leverages a proprietary database of device profiles, rather than depend on
the raw unsupervised information provided by the devices themselves

● it uses an abstract markup language24 for application authoring (compare to
WALL) and then translates this abstract markup into a concrete markup of
a particular device at runtime

● its application domain also limited to mobile devices, i.e., it is not trying to
provide a one-size-fits-all unifying framework for application single authoring
for both PCs and mobile internet.

Remarks: Volantis Systems is a founding member of the W3C Mobile Web Initiative
[W3CMWI], it has also participated in the W3C Device Independence Working Group
[W3CDIWG] which has recently transformed into W3C Ubiquitous Web Applications
Working Group [W3CUWA].

24 XDIME – XHTML Device-Independent Markup Extensions

Figure 4: High-level schema of the Volantis Framework (source: volantis.com)

2.3 Related Work 27 of 95

MobileAware Interaction Server

An another commercial product which is a part of the company's mobile application
suite [MAWARE]. Similarly to WURFL (2.3.1) and Volantis Framework (2.3.2), it
leverages a device repository bootstrapped by CC/PP (UAProf) profiles. The device
recognition and profile search uses the hierarchical device repository and the device

information submitted with the HTPP request (HTTP headers and/or CC/PP profile) to
lookup the closest device profile in the device repository (Figure 5). The adaptation
itself is using content and media transcoding techniques, implemented either within the
interaction server (Figure 6) or alternatively a external transcoding proxy which adapts

Figure 5: MobileAware - Device Recognition (source: mobileaware.com)

Figure 6: MobileAware - Transcoding Process (source: mobileaware.com)

28 of 95 2.3 Related Work

the existing content (page layout, navigation links) and media (images) for a particular
target device.

Remarks: MobileAware is a founding member of the W3C Mobile Web Initiative
[W3CMWI], it has also participated in the W3C Device Independence Working Group
[W3CDIWG] which has recently transformed into W3C Ubiquitous Web Applications
Working Group [W3CUWA].

2.3.3 Related Research

Adapting multimedia Internet content for universal access

[MOHAN99] Even though this work is not exactly recent, we mention it because it
introduces several interesting features: it uses the InfoPyramid concept [MOHAN98] for
media content description (annotations). The InfoPyramid has a set of modalities (text,
image, audio, video) at its base and the pyramid narrows to the top by decreasing
resolution of individual modalities. Given the text modality, for example, the bottom of
the pyramid corresponds to the original content and incrementally decreases the level-
of-detail by going trough summary of individual textual elements to title and
terminating at the top by null resolution corresponding to skipping a particular element.
Similar resolution hierarchy applies to other modalities too. As this is a pre-CC/PP
work, it uses a custom set of capabilities to describe the client devices: screen
(resolution and color depth), network bandwidth, payload, capabilities (constraints)
regarding display/playback of audio/video/image formats. What is even more important

is the use of the fidelity function (fidelity= 1
1D) , where D represents a distortion

of a particular resource as compared to the original content item. The value of the
fidelity function equals to 1 for the original contant and converges to 0 with the growing
distortion factor. The output of the fidelity function is than used as an input of the
resource allocation (variant selection) algorithm. An important concept implemented in
the resource allocation algorithm is the enforcement of overall device constraints (e.g.
maximum page size in bytes) when choosing the individual resources.

Remarks: Similarly to [ESWA07] described below, this work only deals with individual
pages adaptation, i.e., the framework does not attempt to adapt the overall application
flow and/or inter-page navigation.

An End–End Approach to WirelessWeb Access

[SCCPP01] Represents an early reaction to W3C CC/PP standard. The authors argue,
that CC/PP is unnecessary complex and from the practical usability perspective the
contend adaptation framework needs to be simplified:

“CC/PP Description Framework tries to describe every possible
configuration of the client machine including all little details. Such fine
grained descriptiveness seems of the very limited use given that it
complicates the development of the web services,”
...
“On the server side most details of this descriptions would likely end up
being ignored, or would lead to extremely complex and hard to maintain
web sites”

2.3 Related Work 29 of 95

As a reaction, they propose and implement a prototype of “Simple CC/PP”as follows:
The capability description is limited to classify devices into the following four classes:
PC/laptop with broadband connection, laptop with narrowband connection, PDA and
a WAP device

The physical transport mechanism of CC/PP using HTTP extension headers is reused,
however with the following major semantical difference: instead of actually fetching the
profile over HTTP, the profile URL itself is used to map a device into one of the four
classes. Nevertheless, for compatibility reasons, the authors recommend to place the
actual CC/PP profile at the profile URL send in the HTTP request header

The content adaptation implements the following fall back strategy: first try to find a
content variant for a particular device class, if not found, try to figure out, if the content
can obtained by transforming an XML document using XSLT, the last resort is to
return the content for the PC/laptop with broadband connection.

Remarks: The ideas of raising the level of abstraction and using a fall-back algorithm
for finding the most appropriate content are supported by the author of this thesis. On
the other hand, the simplifications proposed in the Simple CC/PP framework are
substantial and limit the ability to implement fine-grained control over the content
adaption process where needed: for example distinguishing WAP 1.0 and WAP 2.0
devices, or a particular version of a Java libraries present on the client device.

Enhancing pervasive Web accessibility with rule-based adaptation strategy

[ESWA07] The article describes a framework for user interface adaptation according to
to the context profile. Context Profile consists of the following components: Situation,
Accessibility, Network and Device. Each component is a closed enumeration of values,
e.g. Device corresponds to one of the pre-defined device classes (laptop, PDA, phone).
Application resources (content) are annotated on three layers: structure layer
(a structural decomposition of the user interface – a web page25 – into a set of objects,
each having a unique ID), modality layer (text, image, video, audio) and fidelity layer
(original, high, low, mute, blank). Each resource variant is annotated by a triplet (object
ID, modality, fidelity). The variant selection/transformation is driven by a rule base
evaluated using Jess rule engine [JESS07], a lightweight Java reasoning engine
supporting Java Rule Engine API Specification 1.0 [JSR94] developed as a part of the
Java Community Process.

Remarks: An interesting aspects of this work are accessibility modeling, situation
modelling by representing them as first class entities. Also an application of a rule based
engine instead of hard-coding the rules in an imperative programming language is an
interesting idea. On the other hand, the context representation is relatively high-level as
the individual axes are just value enumerations without further hierarchical structuring.
The sample enumerations are very coarse-grained – more resembling a laboratory
experiment than a real-world richness and complexity. Additional concerns arise
regarding the logical scalability (comprehensibility) of the growing rule base in case
a richer (more fine-grained) context representation needs to be put in place. Similarly to
[MOHAN99] described above, this work only deals with individual pages adaptation,
i.e., the framework does not attempt to adapt the overall application flow and/or inter-
page navigation.

25 The adaptation scope corresponds to a page level and is mainly focused on content adaption, i.e., the
framework does not attempt to adapt the overall application flow and/or inter-page navigation.

30 of 95 2.3 Related Work

Device-independent web browsing based on CC/PP and annotation

[HK06] The article describes a transcoding framework which uses CC/PP profiles to
represent device capabilities (delivery context) and sophisticated hierarchical
annotations to annotate the resources. Similarly to [ESWA07] and [MOHAN99], the
adaptation happens on the page-level. A page is annotated by hierarchical
decomposition into groups and sub-groups, each group has an importance score,
primary resource variant annotated by a set of constraints referring to the CC/PP profile
(similar to [CAPCLASS]) and also each group can contain one or more alternatives
ordered by statically determined (constant) fidelity score and a set of CC/PP constraints
expressed in the same way as constraints for the primary resource variant. The
substitution algorithm tries to use the primary resource and if it does not pass the
constraints, it tries one alternative after another in order of decreasing fidelity score until
it passes the constraints determined by the CC/PP profile of the device. Besides local
resource substitution, the framework allows for skipping less important groups and
paginate the original page (designed for a laptop or a PC). The pagination algorithm
leverages the hierarchical groups annotations to split the page on individual group/sub-
groups level and generate the navigational map (hierarchical menu) automatically.

Graceful Degradation:
 a Method for Designing Multiplatform Graphical User Interfaces

[FLORINS06] is a doctoral thesis which builds on an earlier work [FLORINS04],
thesis statement goes as follows:

“The design and development of multiplatform user interfaces benefits from
a semiautomatic, model-based, transformational approach which applies
transformation rules to a source model, conceived for the least constrained
platform, in order to produce one or several target models, adapted to more
constrained platforms.”

The work presents a model-driven framework which adapts the referential (PC or laptop
based) web application for (constrained) mobile devices. The core of the framework is
UsiXML [USIXML], a meta language for for defining application models on the
following four levels:

1. Tasks & Concepts: task and domain models
2. Abstract User Interface: AUI model + resource model + Interactor model26

3. Concrete User Interface: CUI model + resource model + Interactor model
4. Final User Interface: actual software artifacts

Besides the layers above, there are additional models which do not belong to a
particular abstraction layer: mapping model for defining relationships between the
models above, context model (consisting of user model, environment model and
platform model) and transformation model defining a rules sets for inter-model
transformations. The process of graceful degradation is a sequence of transformational
steps from the most abstract representation towards the final user interface artifacts. The
task model of UsiXML builds on an extended version of ConcurTaskTree27 (CTT)
[CTT00]: “a hierarchical task structure, with temporal relationships specified between
26 AUI model is an instance of the interactor model – a meta-model of a particular abstract of concrete

widget library, resource model contains the static resources like labels or images
27 Another framework using cascade of models and CTT is TERESA: a transformation-based

environment for designing and developing multi-device interfaces [TERESA04].

2.3 Related Work 31 of 95

sibling tasks.” [FLORINS06]. The platform model is using CC/PP (UAProf) described
in section 2.2 to represent device capabilities.

Tool-supported single authoring for device independence and multimodality

[SIMON05] Discusses a methodology (authoring method) and a model-driven
framework for multimodal application development using single authoring approach.
The motto of the article is to support the development of multimodal applications while
preserving the traditional workflow the web application designers are used to:

"One objective of the project was to devise a more “developer-friendly”
single authoring method for cross-platform user interfaces; i.e. a method
that enables a smooth transition from today’s work practices"
...
"Within our project, the fundamental assumption was that – despite
platform-independence – the traditional workflow of designers should be
preserved as much as possible."

The methodology presented in the article uses an iterative approach to develop a series
of prototypes for selected device classes (PDA, smart phone, wap phone and a voice
interface), starting with one device class and subsequently adding more device classes.
Each prototyping cycle is concluded by user acceptance testing (UAT). Once the
prototyping phase is completed, the development team has sufficient knowledge to
generalize the user interface model to an abstract MONA UIML (User Interface Markup
Language), which has been developed by the same team as a part of the MONA project
[MONA05], [MONA]. When the application development is completed, the concrete
user interface representations are generated by transformations based on the delivery
context (target device class) and the UIML model. An Eclipse based tool has been
developed as part of the MONA project to support the development development
process. The authors also discuss their standards convergence plans to modify UIML so
that instead of using custom abstract widgets, the W3C XForms [XFORMS] will be
used. The additional papers discussing discussing various aspects of the MONA project
are [SCHATZ05], [BAILLIE05] and [TMN04].

Context-Aware Adaptation for Mobile Devices

[MDM04] and [SAINT03] describe an adaptation framework, which uses Universal
Profiling Schema [UPS02] (from the same authors) to describe delivery context and
server resources. The UPS is inspired by CC/PP and UAProf, however it uses
a different vocabulary than UAProf and extends the coverage by not only describing the
client device but also the server resources. The client profiles defined in UPS are Client
Profile (Hardware platform, Software platform and Browser user agent) and Client
Resource Profile (device constraints regarding the individual content categories). The
server profiles are Document Instance Profile (includes document instance description,
multimedia content, adaptable resources description), Resource Profile (media resource
description, adaptable resources description) and Adaptation Method Profile (adaptation
resource description, adaptation method description).

The delivery context is determined by the client profiles. The content repository is
represented as a web service supporting XQuery [XQUERY] language to express the
constraints of the delivery context. The resources in the repository are annotated using
the server profiles. The repository supports two modes: a negotiation module and

32 of 95 2.3 Related Work

adaptation module. The negotiation module is used to retrieve an appropriate variant of
an existing resource, while adaptation module is applied in cases when content
adaptation becomes necessary, either a structural transformation or media resources
transformation is applied.

Structural transformation (for content like XML, XHTML, SMIL) uses XSL
Transformations [XSLT] standard. It is actually a two stage process: first a concrete
XSLT template is generated from the XSLT meta-template using the delivery context,
second the concrete template is applied to the actual resource. The structural
transformation implements a semantic hierarchy adaptation similar to [MOHAN98] so
that it allows to choose a level of detail appropriate for a particular device. Similarly to
[HK06], the structural transformation supports pagination and navigational links
generation. The media resources transformation is typically implemented in Java or as
a library embeddable to Java.

Remarks:This works seems to ignore the fact, that RDF (and in turn CC/PP) is quite
benevolent in terms of serialization of RDF graphs into XML: the same semantical
statements can be encoded as XML elements or XML attributes, this effectively disables
usage validation of RDF documents using XML Schema language as the validation
needs to be done on the semantical level, not the syntactical one. The same issue applies
to using XQuery (which uses XPath) to extract data from RDF documents. A query
language specifically designed for RDF [SPARQL] is now under development in W3C.
The combination of CC/PP and XQuery may only work assuming XML serialization
conventions are systematically followed for CC/PP XML serialization.

Experiences in Using CC/PP in Context-Aware Systems

[Indulska03] Similarly to [UPS02] above, this work employs CC/PP with custom
extension vocabularies to represent richer delivery context that UAProf standard. The
authors use CC/PP to model LocationProfile (physical location – address, logical
location – IP address, geodetic location – coordinates, orientation and modifications),
extended NetworkCharacteristics (disconnection status, quality of service). Besides the
delivery context, the authors leverage CC/PP for expressing application requirements
and current session. Based on the extended context and requirements information the
article also discusses a three-layer Context Management Infrastructure constituted from
a set of sensors, actuators and awareness modules on the first layer, context manager
and context repository on the second level and the actual context aware application on
the third layer. The layers of the architecture communicate using subscribe/notify
mechanism: the awareness modules communicate with the context manager, which in
turn updates context repository and notify subscribers on the application layer.

2.4 Important Observations

In the following subsections, we are trying to outline in more detail some interesting
issues we have briefly touched in the sections above. We consider these topics to be
very important from the perspective of configuration management and content
adaptation. We believe that the fact these issues are not sufficiently resolved by the
existing standards and technologies for content adaptation represents the key reason
behind the unsatisfactory situation regarding their adoption in the day-to-day practice.

2.4 Important Observations 33 of 95

2.4.1 Metadata Consolidation

An important aspect of applying metadata to version and variant control is the ability to
consolidate information acquired from various information sources and define
resolution rules used to combine (sometimes contradictory) information pieces into a
single coherent view. None of the technologies described above addresses this issue
completely. For example CC/PP together with UAProf define resolution rules28 required
for merging complete profiles and partial profile-diffs, as well as handling the CC/PP
default construct in addition to that. However, the standard does not provide any means
for handling possibly overlapping data coming from other sources than CC/PP.

Let us demonstrate this issue using probably the most frequently used metadata attribute
used for content adaptation: the locale29 information. In a web application, the locale
information may be a part of the HTTP header Accept-Language as described in section
2.1.1. If a client device supports CC/PP and UAProf, the very same information can be
delivered as a part of the UAProf profile: the CcppAccept-Language attribute of the
SoftwarePlatform component. Both Accept-Language and CcppAccept-Language
belong to the HTTP request scope so they can potentially change with every HTTP
request. They are set-up in web browser preferences of the client device. In addition to
these attributes, many web applications incorporate locale selection directly into their
user interface: Remember the familiar country flag icons found on many web sites? The
users can choose their preferred language without the need to modify the browser
preferences. This type of locale selection is typically implemented using cookies. Last

28 UAProf defines three resolution rules: Locked, Override and Append, the last one only applicable to
lists

29 Locale – typically a language and optionally also country ISO codes, see also [LC142]

Figure 7: sources of locale setting (1) web browser, (2) application, (3) user profile

34 of 95 2.4 Important Observations

but not least, some applications, which require a user registration, store locale
preference as a part of server-managed user profile.

In a general case, the locale information can be extracted from the following three
sources, as depicted on Figure 7 above: (1) web browser settings (Accept-Language or
CcppAccept-Language), (2) web application settings (a session or a persistent cookie),
(3) a server-managed user profile

Given the above, there could be various resolution rules and strategies in place to decide
which source is to take precedence over the others if conflicting values are retrieved
from multiple sources and, on the other hand, to fall-back to a less-trusted metadata
source in a case the preferred one is unable to provide the requested value. A typical
order of precedence could look like:

1. server-side user profile
2. cookie (web application setting)
3. web browser settings (UAProf or HTTP header)
4. application default

In other words: if the user is a registered user, use the locale value from the user profile,
if not, see if the user has expressed his/her preference by clicking a flag on the web site,
if there is no such preference set, see what the web browser states in the Accept-
Language HTTP header, if the browser does not state Accept-Language nor does it
support UAProf, use the application default locale.

There could be many different application-specific variations of the above, pending the
nature of the application. One could for example consider the choice in the web
application user interface to temporarily override the permanent user profile settings or
prefer the web browser settings over all the others. The key take-away from this lesson
is, that no matter how many different resolution strategies we can envision, it is not
possible to enumerate all of them. The goal should be to provide a flexible framework
which allows the web application designers to define their own strategy for resolving a
particular metadata attribute from multiple sources, while providing an abstraction layer
which let us them to achieve this goal without the need to deal with the technical details
and differences between those sources.

2.4.2 Metadata Canonicalization

Another important and often overlooked topic is canonicalization, i.e., mapping all
syntactical variations of the same semantical entity to a single canonical representation.

Figure 8: UAProf JavaPlatform attribute values (raw sampling)

/

CLDC MIDP

CLDC/1.0-compatible MIDP/1.0-compatible

Pjava/1.1.7-compatible

Profile/MIDP-2.0

Configuration/CLDC-1.1 MIDP 1.0Configuration/CLDC-1.0 Profile/MIDP-1.0

CLDC-1.1CLDC/1.0

MIDP-2.0

MIDP/1.0

MIDP/2.0-compatibleMIDP 1.0-compatible

MIDP 2.0

MIDP-1.0

2.4 Important Observations 35 of 95

This is closely related to the issue of consolidating multiple different metadata sources
discussed above, as the likelihood that different systems represent the same data
differently is inherently higher, but as we show in the following example it can
represent a severe issue even within a single metadata domain.

The Figure 8 above shows a taxonomy built by sampling the JavaPlatform attribute of
the SoftwarePlatform component in available UAProf repositories [UAREP1],
[UAREP2] representing the actual mobile devices produced by various vendors.
Obviously the JavaPlatform attribute is not very well defined in UAProf, as it is in fact
overloaded to represent two different attributes: J2ME Configuration and J2ME
Profile. From the canonicalization point of view, we can see that the value-set of the
taken sample contains many redundancies, meaning that different device vendors and
even different product lines are not using metadata values consistently.

We tried to clean up the value set, establish a naming convention and canonicalize the
raw JavaPlatform attribute values. The result can be seen on Figure 9. The original raw
values still remaining in the taxonomy have clear background, new nodes introduced in
order of the naming convention are in italic with yellow background. For the purpose of
the taxonomy, we semantically distinguish the nuance of being an implementation of a
certain J2ME configuration or profile and claiming to be compatible with. Even though
this distinction can most likely be ignored on most occasions, we try to make sure our
canonicalization process does not loose any semantical information contained in the
original raw data set. Also, we did not extend the taxonomy in any way by enriching it
with additional information not represented in the raw data sample, for example, there
was no device claiming to be CLDC 1.1 compatible and thus there is no such a node in
the cleansed taxonomy on Figure 9.

The lesson learnt from the example above is, that even though there are rigorous
standards in place, like UAProf, it is quite dangerous to directly employ unsupervised
metadata in application versioning as there is often a need to cleanse and canonicalize
the data before they can be meaningfully used. The issue of canonicalization is usually
amplified in case of consolidating multiple independent metadata sources.

2.4.3 Metadata versus Knowledge

Throughout the history of computer science, there were several attempts to popularize
various frameworks allowing dynamic (just-in-time, on-demand) binding of software
components or software services. Examples of these could be the CORBA Trading
Object Service [CTOS], Sun's Jini technology [JINI] or the most recently Universal

Figure 9: UAProf JavaPlatform attribute values (after manual cleansing)

/

CLDC MIDP

MIDP 1.0 MIDP 2.0

Pjava

CLDC 1.0 CLDC 1.1

MIDP 1.0 compatible MIDP 2.0 compatibleCLDC 1.0 compatible

Pjava 1.1.7

Pjava 1.1.7 compatible

JavaProfileJavaConfiguration

36 of 95 2.4 Important Observations

Description Discovery & Integration [UDDI]. We put the CC/PP and UAProf discussed
in section 2.2.1 on the list too, even though they are tailored more towards content
adaptation than dynamic component binding. What is common to all these systems is
that they provide a framework for resource annotation and retrieval. Some of them, for
example UAProf, even define a concrete vocabulary, or better to say a meta-model of
their subject domain specifying what attributes are used to represent the resource
properties as well as their data types and/or format.

The common problem of all these frameworks is, that they stop on the meta-model
(vocabulary) or even meta-meta-model (generic framework) level and do not provide
sufficient constructs and tools to sample, analyze and efficiently leverage the actual
metadata – the value sets found in their repositories describing and the existing software
components, services or resources. As we show in this section, even having a typed
vocabulary in place is insufficient to start developing an application while utilizing the
underlying meta-model: there is still additional information needed and even though
many frameworks mentioned in the quite formal and rigorous, they come short on this
point and somehow expect that the missing unspoken-of information is informally or
even miraculously added into the mix to make the framework actually work.

Let us start with a simple motivational example to make the point: the task is to adapt
the user interface according to the device's screen size. UAProf defines attribute
ScreenSize of type Dimension within its HardwarePlatform component. UAProf
Dimension is a pair of positive integers [JSR188]; and in the case of ScreenSize it
represents screen width and screen height in pixels. Given the information provided by
the UAProf RDF Schema, assuming integer is meant to be the commonly used 32 bit
signed number30 and while not having any other information, one could assume normal
distribution31, split the available range by half in both axes (width, height) and define
small screen devices as those having ScreenSize smaller than 1 073 741 823 x 1 073
741 823 pixels and large screen devices as those having higher resolution than that. For
anybody familiar with typical screen sizes (display resolutions) used in today's PCs,
workstations, laptops or PDAs and web phones, the example above most likely appears
totally absurd: it is clear that 100% of the existing devices would belong to the small
screen class, so there is no point developing a specific screen layout for the large screen
devices as defined above.

30 Curiously, the exact datatype is not mentioned anywhere in [UAP06].
31 From statistics, normal distribution, a. k. a. uniform distribution – all values occur with equal

probability

Figure 10: An example of a generic ScreenSize classification hierarchy

/

ScreenPhone CompactDevice PersonalComputer

CellPhone PDA Tablet WorkstationLaptopSmartPhone

QVGA VGA WXGAXGASVGA

2.4 Important Observations 37 of 95

The problem is that the UAProf vocabulary – the meta-model describing the properties
of web-enabled portable devices – does not give us any hint regarding what is the actual
distribution of values within the Dimension domain nor does it mention the fact that
screen resolutions are actually highly standardized and majority of the devices on the
market use one of a relatively few well-known resolutions32. To make the ScreenSize
attribute useful, so that it helps us to classify devices into clusters suitable for
developing tailored screen layouts, we need to bring in the additional information about
display resolutions of the existing devices on the market and construct a mapping from
the Dimension value space onto our ScreenSize classification taxonomy.

In order to maximize the gain from this exercise, the taxonomy needs to be constructed
in a way so that their nodes directly correspond to the variants we want to support in our
application. It is important to choose the right level of detail, so that we can dive down
into the classification hierarchy if a need to distinguish subtle nuances between devices
arises, but at the same time, we need to be able to abstract away from the details and
cluster devices efficiently together, so that we can share resources and artifacts across
application variants whenever appropriate: Figure 10 shows a portion of a generic
(potentially reusable) classification hierarchy, while Figure 11 shows an example of
a taxonomy specifically focused on mobile business applications market where it
captures much higher level of detail.

32 Well known resolutions (examples): QVGA (320x240), VGA (640x480), SVGA (800x600), XGA
(1024x768), etc.

Figure 11: An example of a specialized ScreenSize classification hierarchy

/

ScreenPhone CompactDevice PersonalComputer

CellPhone PDA Tablet WorkstationLaptopSmartPhone

QVGA the most common PDA or communicator
screen size (240x320) or (320x240)

BlackBerry 62xx

BlackBerry 67xx BlackBerry 72xx

BlackBerry 77xx

BlackBerry

160x100 BlackBerry 62xx
160x160 BlackBerry 67xx
240x160 BlackBerry 72xx
240x240 BlackBerry 77xx

38 of 95 2.4 Important Observations

Let us go through another example to demonstrate how little information is provided by
a meta-model alone: UAProf Keyboard attribute of the HardwarePlatform component is
defined in the RDF Schema as a Literal which corresponds to an arbitrary string. Any
idea what the actual values of this attribute may look like? A quick scan through the
publicly available UAProf repositories turns out the result (Figure 12): besides the
canonicalization problem discussed in the previous section, we observe that even the
data sample does not provide much information regarding the qualitative measures of
particular devices with the respect to entering data. For example, whether a device is

able to accept alphanumeric text and how fast/convenient such an input is from the end
user perspective. Similarly to the ScreenSize attribute, also the Keyboard attribute
requires additional work to investigate the semantics of the individual literal constants
collected by data sampling and construct a taxonomy capturing the information needed
to classify the devices with the respect to their data input qualities (Figure 13).

To summarize this section: It is not sufficient to rely just on a framework (CC/PP) or
even a domain-specific meta-model (UAProf) when trying to employ metadata for
versioning and variant support. Several steps need to be taken to cleanse and enrich the
raw data in order to truly realize the potential provided by a framework like CC/PP:

1. Proceed with representative data sampling to have an idea about the actual
attribute values, this is a prerequisite for being able to implement
canonicalization as per section 2.4.2.

2. Build a hierarchical classification (taxonomy) which is necessary for tagging
application resources. Annotating using with the use of a taxonomy has an

Figure 12: UAProf Keyboard attribute values (raw sampling)

/

Disambiguating NaviSpinner

OnScreenQwerty

PhoneKeypad Qwerty Rotator

PhoneKeyPad

Figure 13: A custom InputClass classification hierarchy

/

Speech

DTMF

Numeric

FastAlphanumeric

Keypad

Qwerty

PhoneKeypad

OnScreenQwerty

Alphanumeric

PointingDevice

2.4 Important Observations 39 of 95

advantage of being able to attach a more generic tag value to a resource which
can be shared between multiple variants.

● One can re-use an existing standard taxonomy33, if applicable, refine an
existing generic taxonomy to provide more detail where necessary or
develop a custom taxonomy specifically tailored for his company and/or
a particular application.

● When building such a taxonomy and deciding what level of detail to
choose, it is useful to perform targeted market analysis and/or statistical
analysis of the existing traffic on the web site, to figure out what clients
(devices) are likely to access your application and even more
importantly how often: It makes sense to dive into more detail for the
devices which have a significant market share in your application domain
while default to common artifacts for marginal devices.

3. Building and maintaining taxonomies for individual meta-model attributes is
expected to be an iterative (recurrent) process. After boot-strapping an
application based on the initial analysis and survey, one can revisit the
taxonomies based on the actual traffic and repeat this step on regular basis to
keep the taxonomies up to date. Also, as many new devices are emerging on the
market every year and due to that the capabilities of an average device in each
category are shifting over time, it is necessary to update the mappings from raw
metadata to taxonomies34.

2.5 Background Conclusion

We have started this chapter with two motivational case-studies to introduce the reader
into the problem domain. We followed by describing and evaluating the current state-
of-the-art standards based technology stack. We also discussed selected representatives
of open source, commercial and research works related to the topic of this thesis. To our
best knowledge, the works presented include the most relevant related work in each
category, with the focus on the most recent work in the domain, aiming at developments
taking place after year 2000.

We compare the versioning and adaptation framework presented in this thesis to the
standards stack (2.2) and the related work (2.3) in section 6.3 (Related Work
Evaluation).

33 For example UNSPSC (United Nations Standard Product and Services Classification) or NAICS
(North American Industry Classification System)

34 For example, today the average PDA ScreenSize is QVGA (240x320), while in a year or two, it is
likely to be twice as much – VGA (480x640).

40 of 95 2.5 Background Conclusion

3 Setting the Goals 41 of 95

3 Setting the Goals
Today, developing multimodal or multi-variant applications is too complex and
expensive which often forces the application providers to focus on a few blockbuster
devices while abandoning the rest of the market. The author of this thesis believes, that
by providing the right tool-set to the application designers and developers, we can spur
a wider adoption of the existing standards for capturing device capabilities and user
preferences, which would ultimately lead to a richer user-experience available for a
broader audience.

The aim is not to replace the existing standards, it is to implement an integration layer
on top of the existing technologies to provide a consolidated and application-centric
view of the versioning and configuration metadata to the application designers and
developers. The goal is to practically enable the single-authoring approach, i.e.,
developing all the variants in parallel in a single framework and share as much artifacts
as possible between those variants to reduce the amount of redundant work.

As demonstrated in sections (2.2 and 2.3), there are various existing standards and
technologies for describing device capabilities and user preferences (metadata), yet
problems arise while trying to efficiently interpret and consume the information
provided by these frameworks when building the actual application. As we are trying to
bridge the gap remaining between the current metadata technology stack (Figure 3,
page 20) and the application itself, we need to keep in mind the known issues and make
sure that these are addressed and resolved. Let us summarize the essential findings here
in a few bullets, as it will make easier referring to them in the later chapters, when
evaluating whether the proposed solution fulfills the goals set:

1. Metadata Consolidation: Metadata are coming from various overlapping sources
(configuration files, server-managed user profiles, HTTP headers, UAProf
profiles). It should not be left up to the application developer to consolidate all
these information sources and define resolution rules by embedding them the
application code. (section 2.4.1, and also Supporting multiple vocabularies and
vocabulary versions on page 21)

2. Metadata Canonicalization: Practical experience shows that raw metadata
sources can not be blindly trusted. There are multiple reasons for that situation
(see Producers, consumers and beneficiaries, People are inherently fallible on
page 21) and therefore there is a need to cleanse and canonicalize metadata
before they can be manipulated programmatically. (2.4.2)

3. Level of Abstraction Gap: The metadata sources, as being domain-specific and
application-agnostic at the same time, often provide the information on a
different level of detail and using different terms than a particular application
needs. It is highly desirable to transform and enrich (pre-process) the metadata
so that they represent the actual knowledge directly realizable by a particular
application.(2.4.3) Pre-processing data for a specific application may also help
to mitigate some of the other issues discussed above (Classifying information is
inherently hard, Metadata is inherently biased, page 21)

42 of 95 3 Setting the Goals

4. Domain Expertise Issue: The existing W3C standards for metadata annotations
look like they were designed by the experts in the field of knowledge
management and meta-modeling for the experts in the field of knowledge
management and meta-modeling. They are based on the foundations of Semantic
Web, which makes them very generic and powerful, but it also makes them quite
difficult to learn and use in a day to day practice for those, who are not experts
in the meta-modeling domain. There is a need to insulate the application
developers from the complexity of the metadata frameworks and present
metadata in a form which corresponds to the application architecture and design
perspective. In other words: in addition to the existing metadata-centric tools,
which are designed for metadata modeling and manipulation, we need to provide
simplified tools solely focused on metadata consumption. General knowledge of
web-based authoring, object oriented programming and design should be
sufficient for being able to use the framework.

5. Best Practices Enforcement: Another important requirement, which needs to be
addressed, is the ability to maintain and evolve the application over time while
containing the total cost of ownership. It is too easy to let the versioning logic
proliferate to the application logic, leading to unmanageable spaghetti code
base. The proper solution for the versioning logic is apply separation of
concerns and separate it from the application code in a way similar to the
technique used for separation of business rules or branding from the core code in
order to be able to flexibly and cheaply modify these cross-cutting concerns
without the negative regression impact on the entire application. As of the
versioning logic itself, we need to ensure proper modularization of the
versioning rules, to encourage reusability and avoid ending-up with one
incomprehensible cloud of code which is hard to comprehend, evolve and
maintain.

4 Addressing the Goals 43 of 95

4 Addressing the Goals
4.1 Design Considerations

Before starting to actually evaluate possible approaches to addressing the goals of this
thesis, let us discuss the functional and technical consideration which need to be taken
into account. In the Functional Considerations section we refine the goals stated in the
previous section. The technical aspects like performance are discussed in Technical
Consideration section.

4.1.1 Functional Considerations

● Metadata Consolidation: when merging data from multiple, possibly
overlapping metadata sources, we need to be able to:
i. define priority of individual metadata sources to ensure the resolution rules

unambiguous
i. implement a safe fall back mechanism, for the cases the preferred source(s)

are unable (temporarily or permanently) to provide desited data
ii. define the resolution rules on the level of individual metadata attributes,

because each attribute has different semantics

● Metadata Canonicalization: the canonicalization process can be as simple as
using a mapping table to map a set of well-known alternatives to a single
selected value, or as complex as a need to parse and interpret composite literal
values (see section2.1.1, User-Agent HTTP header) or to employ an algorithm to
determine the canonical value given an unconstrained value space, and a set of
interpretation rules. Therefore we need to make sure the canonicalization feature
is very flexible and allows the user of the framework to choose his/her preferred
tool most appropriate for a particular situation (mapping tables, declarative rule-
based languages, imperative programming languages, external services – e.g.
a statistical data analysis)

● Level of Abstraction Gap: next to canonicalization, is constraining the values
further using classification.
i. The simplest form of classification is to introduce a controlled vocabulary,

constructed from the source value set by applying some sort of equivalence
relation (similar as in the case of canonicalization) to factorize the source
data into a set of equivalence classes represented by the values of the
controlled vocabulary.

ii. More advanced option (if applicable) is to implement hierarchical
classification (a taxonomy), as presented on many examples earlier in this
thesis. The major advantage of using the taxonomy over the flat controlled
vocabulary is to represent generalization/specialization relation which can in
turn to be used to implement a fall-back strategies, both on input side (an
unknown attribute value can be mapped to the default root value) and on the
output side (if there is no such resource variant having the desired attribute
value, we can progressively generalize the requirement until reaching the
closest available resource variant – closest in terms of a given taxonomy)

44 of 95 4.1 Design Considerations

iii. Besides classification, we need to be able to represent relations between
attribute values, which are present in many ontologies and meta-models to
represent relationships between classes and/or instances.

iv. One specific case is a need to support an explicitly stated ordering relation:
ordering of attribute values can depend on a particular situation (point of
view): the author of this thesis witnessed a situation when a customer was
trying to claim a computer game he bought with the sticker “Windows 95 or
newer” and was not able to run it on his Windows NT 4.0 workstation. The
customer (without realizing it) implicitly assumed total ordering determined
by the time axis (Windows 95 was released 1995 while Windows NT 4.0 in
1996) and apparently was not aware of the fact, that that at the time
Windows operating systems family constituted of two separate product lines,
and the order relation was in fact a partial ordering.

● Domain Expertise Issue: In recent years, the development of (web) applications
became increasingly complex due to the high fragmentation of development
tools market and ever-growing amount of technologies tools and languages
needed to master in order to become productive in the end-to-end application
design and development. Moreover, the developer needs to change mindset very
often when switching from one technology or language on the stack to another.
The aim of this work is to try to avoid further complication of the application
development landscape by limiting itself to the common tools and technologies
the application developers are already familiar with and only use such concepts
which are easily transferable to other commonly used tools of similar expressive
power (e.g. Java versus C#).

● Best Practices Enforcement: The aim is to provide guidance which naturally
leads to separation of concerns, encourages modularity and avoids proliferation
of the versioning logic in to the core application code. If these goals are met, it
helps to increase overall robustness, long-term manageability and evolvability of
the system. On the other hand, the framework should not interfere with the
development proces and practices: frameworks which strictly enforce some
particular methodology throughout the entire development process are harder to
integrate into the existing systems and tend to discourage the developer to adopt
them. Given the above, the goal should be to enforce the properties mentioned
above only withing the framework, but avoiding infliction of the entire
application: from the application perspective, the framework should act as a
library easily pluggable into existing as well as newly developed applications.

4.1.2 Technical Considerations

Modern object-oriented frameworks like the CATCH2004 Multi-Modal Portal
([ICSM2001], [IIWAS2001] or Sun Microsystems Java Server Faces [JSF] use server-
side widget libraries very similar to those used on desktop computers. Such libraries
support hierarchical composition of widgets, layout definition, event bindings and last
but not least a pluggable look-and-feel which is needed for user interface adaptation for
different client platforms and/or modalities.

When talking about multimodal applications as defined in this thesis, we may consider
the following kinds of adaptations taking place to accommodate an application to

4.1 Design Considerations 45 of 95

a particular device and adapt the application as the device settings change during the
session:

● Application Dialog Flow: depends of modality or a set of modalities supported
by the client device, for example: XHTML+Voice, if the user set device on mute
(or on contrary to hands-free/eye-free mode – e.g. while driving) during the
session, it becomes unimodal and the dialog flow needs to be re-drawn
accordingly

● User Interface Layout: depends on device capabilities, modality and/or screen
orientation (if applicable) which may change many times during the session

● Individual Widget Look-and-Feel: depends on device capabilities, modality
and screen orientation (if applicable), a set of widget instances in use can be
different in each turn, there can be tens or hundred of instances on each “screen”
(considering a PC application)

● Static Resource Variant: depends on device capabilities, modality, user's
language, each widget can have tens of resources like labels, messages, images

Adaptation Kind Adaptation Scope Approximate Number of Occurrences

Application Dialog Flow session typically less than 10 times per session

User Interface Layout request typically less than 100 times per session

Individual Widget Look-and-Feel request tens or hundreds per request

Static Resource Variant request Hundred or thousands per request

Table 1: Adaptation kinds, scopes and estimated number of occurrences

Given the estimates above, which apply to a rich user interface of a PC-like client
device, one thing becomes immediately clear: the adaptation process needs to be
designed so that the resource variant selection (adaptation) is fast enough so that the
delay does not discomfort the user. There can be thousands of instances of resource
adaptations in a single turn (client-server round trip) in case of rich user interfaces like
PCs and laptops. If possible, the results of reasoning for individual resources and
delivery contexts should be cached, so that the next instance of adaptation request for
a given resource is much faster and less server resource demanding in cases when the
relevant portion of the delivery context has not changed.

4.2 Possible Approaches

4.2.1 Web Ontology Language

While looking at how to best address the goals stated above, the first place to look for
a solution is the W3C stack of Semantic Web technologies. The reason for that is the
fact, that CC/PP and UAProf are built using technologies (RDF, RDF Schema) which
belong to the Semantic Web. Web Ontology Language (OWL)35 is an XML language
which builds on RDF Schema and extends it with additional constructs for defining
ontologies and meta-models:

35 The abbreviation for the Web Ontology Language is surprisingly OWL.

46 of 95 4.2 Possible Approaches

“RDF Schema is a vocabulary for describing properties and classes of RDF
resources, with a semantics for generalization-hierarchies of such properties
and classes. OWL adds more vocabulary for describing properties and classes:
among others, relations between classes (e.g. disjointness), cardinality (e.g.
"exactly one"), equality, richer typing of properties, characteristics of properties
(e.g. symmetry), and enumerated classes.” [OWL04]

OWL comes in three increasingly powerful editions: OWL Lite, OWL DL (DL
stands for description logics) and OWL Full. OWL DL and OWL Full share the same
set of language constructs, yet OWL DL imposes certain restrictions on those constructs
to ensure computational completeness and decidability, therefore for the purposes we
would like to employ OWL, the OWL DL seems to be most appropriate.

The idea is to let CC/PP (UAProf) to represent raw (source) data, OWL to represent
a set of additional rules governing the data (ontology, meta-model) and a reasoning
engine to process the two and present the results in a consolidated form suitable for the
application development. Out of the four requirements listed above, OWL seems to best
suit the third one – to overcome the level-of-abstraction gap by creating appropriate
classifications and ontologies. With regards to the metadata consolidation (combining
multiple sources and defining resolution rules), this is also achievable in OWL, but
partly remains out of scope – especially the property value acquisition from external
sources: all information needs to be represented in RDF to make it available to OWL
reasoning. On the metadata canonicalization point we hit the first serious weak point of
OWL: as it lacks arithmetic primitives and string (regular expression) operations, it may
be extremely difficult if not impossible to implement required data cleansing entirely in
OWL. This shortcoming may also affect data transformations, for example: given the
ScreenSize (Dimension) from UAProf and trying to construct a ScreenOrientation
property (Figure 14) based on screen width and height, there is no straightforward way
to do that in OWL, even though it is a trivial task using most programming languages.
Quite understandably, OWL can not meat the fourth point on our requirements list (due
to the definition of the requirement): domain expertise issue: being on the top of the
Semantic Web stack, it suffers it requires its users to be an expert in the field of
Semantic Web, ontologies and meta-modeling to make for an efficient use of its powers.
Regarding the best practices enforcement, OWL does not support modularity – a notion
of ontology modules with clearly defined public interfaces. With growing ontology
bases, this can represent a serious maintenance and evolutionary issues.

 To wrap up the OWL technology: OWL does not let us to fully reach our goals
stated above. It comes short in some areas which are easy to handle in common
programming languages. On the other hand, only a portion of its features is needed in
our domain of interest, the bulk of its features is not necessary for our needs, which
makes us to attempt to design such an framework, which will consider application of
OWL as an optional component.

Figure 14: ScreenOrientation derived from ScreenSize

/

Portrait LandscapeSquare

4.2 Possible Approaches 47 of 95

4.2.2 Rule-Based Systems

Majority of the reservations which apply to OWL apply to the other knowledge
representation systems too. They are usually based on first order logic (PROLOG36,
KIF37, Common Logic38) and they suffer the same functional mis-fit (for our purposes)
as OWL: some commonly needed features are missing or cumbersome to implement, on
the other side, the languages wield too much of an expressive power which can very
easily lead an unexperienced developer to accidentally design rule sets of extreme
computational complexity. Another issue with the rule-based systems above and also
rule-based engines like Jess [JESS07] is the problem of maintainability and the ability
to evolve and maintain such a rule base as it grows and gets complicated.

Considering our goals set in the previous section (3), the rule based systems in
general do not address the metadata consolidation and metadata canonicalization, they
excel in raising the level of abstraction, they may suffer from the domain expertise issue
as we do not assume a web application designer to be fluent in usage of rule-based
engines. Last but not least, the rule-based systems may suffer from insufficient
modularity of their knowledge bases.

As a result of the above discussion, we do not rule out usage of rule-based systems
completely, however, we aim for these tools not to become the centrer piece and
a prerequisite of the framework, and rather let the users to plug them into the framework
a well-defined manner if needed.

4.2.3 Ontology Definition Metamodel

Besides the functional aspects, there is also the issue of the language gap: while
CC/PP and OWL are using XML syntax, and others are also either using XML or their
own proprietary syntax, majority of the applications are developed using an object
oriented languages like Java, C# or Python. As soon as another language is being
integrated in to an application, there needs to be a bridge translating concepts between
the two languages to let them communicate. Such a bridge is typically presented in a
form of an Application Programming Interface (API) expressed in terms of the “client”
language (Java, C# or Python referring to our list above) making the features of the
“server” language (OWL, KIF, XML or SQL) accessible in the client environment.
Such an API can be language specific (allowing to embed a particular language) or
generic, allowing to embed a family of similar languages. To our knowledge there is
only one attempt to implement a generic interface for knowledge representation
languages, which is Ontology Definition Metamodel (ODM) developed by Object
Management Group (OMG) [ODM06]. ODM is trying to cover RDF, OWL, Topic
Maps and UML languages. It defines meta-model for each language using EMOF39 and
it also defines mappings (transformations) between the individual languages. However,
the focus of this work is primarily on meta-modeling and model transformations, i.e., it
is aimed at supporting modeling (meta-modeling) tools and research rather than general
application development.

36 A declarative porgramming language based on direct application of first order logic
37 Knowledge Interchange Format (KIF) – a declarative language for knowledge interchange
38 Common Logic (CL) – a standardized format for expressing statements in first order logic
39 EMOF - Essential MOF, MOF = Meta Object Facility – another OMG specification

48 of 95 4.2 Possible Approaches

4.2.4 Concept Analysis

Another technique potentially applicable to address certain goals of our work, notably
the level of abstraction gap, is the Formal Concept Analysis [FCA] technique. The
formal concept analysis is a technique to analyze source data in the form of a matrix
(objects x attributes) and represent them in the form of concept lattice [LATORD]. The
concept latice is such, that the top node of the lattice is the all encompassing universal
concept which is a generalization of all objects in the source matrix. The individual
concepts correspond to a set of objects with certain attributes and are organized in the
hierarchy, so that objects sharing exactly the same set of attributes correspond to the
same concept node, while objects having some additional attributes are sub-concepts of
that node. The bottom node of the latice is such a concept, which contains objects which
have all the attributes from the source matrix.

The concept lattice is used to discover natural object and property clusters. [CONAL]
The lattice also represents a hierarchical partially ordered structure, which can be used
to represent knowledge in terms of implications between the sub-concepts and their
parent concepts. [LATEO]

An example application of the concept analysis can be class hierarchy analysis and
optimization: Let the source data be a set of classes (corresponds to a set of objects) and
set of all class members and methods corresponding the the set of attributes. The top
node is a set of classes with no members or methods. The bottom node is a set of classes
which have all the class members and call the methods present in the source data. The
individual concepts corresponds to classes which have exactly the same class members
and methods and the only difference between them is their name. The concept-
subconcept hierarchy captured in the concept lattice indicates how (given the source
data) the optimum class hierarchy looks like and if there are any redundancies in terms
of having multiple classes with different names while having exactly the same features
(class members and methods)

While the formal concept analysis looks very promising and it clearly was a strong
inspiration for our own work. We hit the wall when trying to use concept lattices
directly for delivery context representation, resource annotations and matching
provisions to requirements: the problem is, that in concept analysis, the only we can
only check whether a particular object has or has not an attribute, but not a particular
attribute value. Trying to apply concept analysis on UAProf profiles, is difficult,
because UAProf profile has many CC/PP attributes and and many of them are not
boolean values but instead they are literals, integers or dimensions. To represent such
data in a concept lattice would lead to explosive growth of number of attributes: for
example, given the UAProf Keyboard attribute (see Figure 12 on page 38) we would
need to introduce the following attributes:

1. Keyboard_Disambiguating
2. Keyboard_PhoneKeypad
3. Keyboard_Query
4. Keyboard_OnScreenQuerty
5. Keyboard_Rotator
6. Keyboard_NaviSpinner

in order to be able to annotate individual objects (devices or resources) with the respect
to their keyboard capabilities. Even if consolidation, canonicalization and some sort of
abstraction (e.g. representing UAProf ScreenSize as an enumeration) takes place before

4.2 Possible Approaches 49 of 95

actually building the concept lattice, still the resulting lattice would have hundreds or
thousands of attributes (depending on the choses level of granularity). Such a data
structure would be hard to understand and manage and in addition to that, the concept
lattice would be highly subjective depending on the required level of granularity and
grouping rules applied the raw individual attribute values when turning them into
enumerations necessary for the concept analysis.

4.3 Design Conclusion

The results of the research briefly summarized in this section led us to the decision to
address the goals stated in section 3 by designing a versioning framework from scratch,
independent of the standards-based technology stack (Figure 3, page 20) and/or of
a particular underlying technology for capturing the versioning metadata. This does not
mean to re-invent everything from scratch, it only means that the versioning framework
interfaces are technology neutral and has no dependencies on the technologies discussed
in the sections above. On the other hand, the framework is designed to be compatible
with both the standards technology stack (section 2.2) and also allows to incorporate the
technologies discussed in section 4.2.

Due to the fact, that the primary expected application environment of the framework is
an application implemented in a modern object oriented programming language, the
framework itself has a form of an object-oriented API to allow for a straightforward
implementation in an object-oriented language and a seamless integration to an object
oriented application. Java programming language is used for the purpose of
communicating the framework's technical design, as it has effectively become a lingua
franca and an IDL language40 of choice of the IT community. The framework is
presented in the following chapter.

40 A sub-set of Java is commonly be used as an IDL (Interface Definition Language) instead of a single-
purpose languages like OMG IDL.

50 of 95 4.3 Design Conclusion

5 The Versatile Framework 51 of 95

5 The Versatile Framework
Background

The design decisions leading to the presented framework were driven by the author's
former experience in the versioning domain ([JG99] and [JG03]) and the domain of
multimodal systems ([ICSM2001], [IIWAS2001], [SEKE02], [PA20020198719],
[PA20030046316], [PA20060036770] and [DMSP]).

Overall Roadmap

The overall scope of this work is presented in the following sections:

● 1.1 Application Domain (page 9)

● 1.2 Versioning Domain (page 10)

● 1.3 Usage Domain (page 11)

Important observations discovered in the course of the research activity are discussed in
the following section:

● 2.4 Important Observations (page 32)

The thesis goals and high level design considerations are presented in the following
sections:

● 3 Setting the Goals (page 41)

● 4.1 Design Considerations (page 43)

● 4.3 Design Conclusion (page 49)

This Chapter Structure

In this chapter, we first try to introduce the framework from a high-level perspective
and pin-point its key design principles. The details of individual elements are discussed
in subsequent sections. The entire chapter is supplemented by Versatile 1.0 API
Reference [VERSAPI], a complete API reference manual available as a separate
document. It is recommended to have the reference manual readily available while
reading this chapter to look-up details for individual elements when needed.

5.1 The Elevator Pitch

The main idea behind the Versatile framework is describing device capabilities
(requirements) and application artifacts (provisions) using semantically rich properties –
mostly hierarchical classifications (taxonomies) – and employing the semantical
information captured in the properties for implementing a best-effort (approximate)
requirements/provisions matching algorithm. Thanks to the application of hierarchical
classifications, the best-effort algorithm can incrementally generalize the requirements
while searching for the artifacts most closely corresponding to device capabilities. This
ability of constraint relaxing via generalization, allows for extremely efficient metadata
annotation of application artifacts: using generic property values for shared resources

52 of 95 5.1 The Elevator Pitch

while using more specialized property values for resources intended for specific device
clusters or even individual devices.

In addition to the above, the framework provides services for flexible definition of
priorities and resolution rules for property value acquisition from multiple sources and
services for property transformations including canonicalization, information
extraction and information synthesis. These services are aimed at separating the
versioning code from the application code and encapsulating it by a set of well defined
interfaces in order to enforce proper code structure resulting in maintainable and
evolution-friendly code base.

5.2 Conceptual Overview

The above concept map41 captures the key elements of the Versatile framework. Let us
walk over the concept map and briefly introduce each element to give the reader a high-
level understanding of the framework, the details follow throughout the rest of this
chapter.

Properties represent metadata definitions. Each Versatile property has a unique
identification and a data type. This essential information can be further extended by

41 Concept maps is a formalism used for cognitive learning developed by Joseph D. Novak [CMAP06],
[CMAP04]and supported by a tool provided by the Institute for Human and Machine Cognition
(IHMC). The author of this thesis has been using them throughout different work stages
(complemented by UML tooling) for various purposes, including but not limited to recording related
domain knowledge, early system design drafts and charts. More concept maps developed in the
course of this work are available on http://dsrg.mff.cuni.cz/~gergic/versatile/.

Figure 15: Versatile – The Key Concepts (a concept map)

5.2 Conceptual Overview 53 of 95

using one of the semantically richer property sub-types. The set of property sub-types is
extensible, out-of-the-box we provide the data structures identified in section 4.1
(Design Considerations, page 43): controlled vocabulary (an enumeration), relational
property (to represent arbitrary binary relations), order property and last but not least
the taxonomy. The chosen set of property types allows for a straightforward mapping of
information from OWL ontologies or UML meta-models to Versatile: if the source of
metadata information is an ontology or a meta-model (representing a richer structure),
the selected facts, only those needed for the purpose of versioning task, are projected to
Versatile as properties. The flattening of the structurally richer representations into a set
of properties has the advantage of comprehensibility and interoperability: the chosen
representation of metadata serves as a common denominator across the potential
metadata sources, while keeping the necessary expressive power. The designed
typology of properties is provided such that it addresses the Level of abstraction goal as
per section 3 Setting the Goals (page 41).

Delivery Context serves as a property registry and it is in some sense the central entity
of the framework: a property, to become available in Versatile, needs to be registered to
the delivery context alongside its value provider or a property mapping. All used
properties must be registered in the delivery context and it should be the only source of
versioning relevant meta data and configuration settings. Due to its exclusive role in the
framework, it can be used to track dependencies of the application on the external
metadata sources. Delivery context is provided in order to address the Best Practices
Enforcement as per section 3 Setting the Goals (page 41).

Value Providers are used for property value acquisition at runtime. Value providers are
specific to the underlying metadata source, for example an HTTP request, HTTP
session, user profile, cookie, CC/PP engine or a configuration file. Value providers
usually form chains, thus effectively defining resolution policies: value providers in the
chain are visited one by one until the property value is determined. Each property can
have a its own uniquely configured value provider chain thus allowing to define
property-specific rules. The main role of value providers is to address Metadata
Consolidation as per section 3 Setting the Goals (page 41).

Property Mappings are used to calculate values of derived properties42 via
transformations from other properties registered in the delivery context. Mappings are
used to implement canonicalization or other necessary metadata enrichment, for
example to map values from an RDF Literal property (an unconstrained string) to
a well-defined application-specific taxonomy. By using term derived we mean only the
property value is derived (inferred by calculation); not necessarily its data type. The
concept of separating the value acquisition (value providers) and transformations
(property mappings) is very important for transparency and reusability – separation of
concerns. Property mappings are provided so that they contribute to achieving the Level
of abstraction, Metadata Canonicalization and Best Practices Enforcement goals as per
section 3 Setting the Goals (page 41).

Query Templates are used to express reusable metadata constraints and preferences
using an ordered list of property predicates. When specifying a property predicate using
a query template, we uniquely identify the property and specify a property operator
(a relational or a functional operator) to be applied to a property value. Each query
template is associated with a particular delivery context and it validates that the

42 The properties whose values are provided directly by value providers are called leaf properties.

54 of 95 5.2 Conceptual Overview

properties being referred to are registered in the context and that the property operators
are compatible with the property type. To actually search for resources, we create
a Query based on a particular query template by specifying a resource name. In the
course of query initialization, the query template retrieves the property values from its
associated delivery context by invoking the corresponding value providers and property
mappings and substitutes them to the property predicates. The resulting query object
contains all the information needed for evaluation – it has no external dependencies as
all the property values are already fixed. Query Template and Query concepts contribute
to addressing the Level of abstraction and Best Practices Enforcement goals as per
section 3 Setting the Goals (page 41).

Resource Provider consumes a query, searches its underlying repository of metadata
annotated resources and returns the resource (or – depending on query settings – a list
of resources) which most closely corresponds to the metadata constraints expressed in
the query. Resource providers are purpose and data-store specific: they can serve as
class factories for application objects, resource bundles for static resources like labels,
messages or graphics and also as content transformers/transcoders used to dynamically
transform application resources according to the specifications provided by the Query.
The framework specification does not assume any particular implementation or a data
store type for the resources repositories, the only requirement is that all resource
provider implementations must fully implement the query semantics as described in this
paper. Resource Provider concept is introduced in order to address the Best Practices
Enforcement as per section 3 Setting the Goals (page 41).

Result Set is an ordered collection of Resource Entries. The primary order of the
collection is determined by the result score of individual resource entries in the
collection. Score measures how closely a particular resource entry matches the query:
Due to the framework's capability to execute approximate matching in addition to
standard exact matching, we need to measure quality of individual results with the
respect to the original query. Higher the score, higher the entry in the result set; the
exact matches come before any approximate matches. Besides the score, the resource
entry also caries all the metadata annotations of the underlying resource it represents
and most-importantly also a reference to the actual resource. There are two main
reasons the framework returns the results in the form of collection of resource entries:
(1) let the user examine the results with regards to the actual metadata; (2) performance
consideration: having a resource represented by the resource entry proxy object, the
actual resource can be retrieved or instantiated only upon accessing the underlying value
of the resource entry, this is especially significant in case of using larger collections of
result entries.

5.3 Technical Overview

Before we actually start describing the Versatile Framework, we present one more
motivational example to give the reader an idea how it feels to think and work in the
Versatile mindset. The task is as follows: Developing a multi-modal application for
a large number of device categories, there is a need to use different user interface layout
depending the nature of the device and its hardware and software capabilities.

Certainly, we need to take into account the size and shape of the screen and consider
a possibility that the device has no screen at all – a speech application may have no
visual user interface which does not prevent it from having a logical user interface

5.3 Technical Overview 55 of 95

“layout”. Second, we need to consider the markup rendering capabilities of the device:
some devices, even though they have a large screen they may not be capable of
rendering rich user interface layout due to their browser limitations.

For the screen size and shape, let us re-use the taxonomies already presented earlier:
ScreenSize (Figure 10, page 36) and ScreenOrientation (Figure 14, page 46). For the
rendering capabilities let us use a very simple DeviceMarkupClass demonstrative
taxonomy (Figure 16 below).

For now, let us assume we have all the three properties setup in our application
(registered alongside their value providers or property mappings) so that their values
can be evaluated at any time and let us focus on the piece of code which actually deals
with instantiating a context-specific layout manager (Example 7, page 56) :

1. We instantiate a custom implementation of the Resource Provider interface,
which represents a resource repository, or in this particular case a class factory.

2. We setup a Query Template: during initialization, the template is bound a
particular instance of the delivery context, then three constraints are added for
three different properties using the bestMatch operator. The bestMatch operator
can be applied to taxonomies and expresses a soft contraint (a preference), when
adding the constraints to the query template, the query template validates the
properties used in constraints whether they are registered in the associated
delivery context and whether the operator of the constraint is applicable to a
given property type.

3. The newQuery method is invoked for a particular resource (LayoutManager),
during the execution of this method, the metadata constraints are copied from
the query template to a newly created query and the delivery context is asked to
provide the current values for the properties used in the constraints. The result of
the operation is an immutable query object, which does not depend on the
delivery context anymore as all its valued are already fixed: for example:
○ DEVICE_MARKUP_CLASS = "xHtmlBasicDevice"
○ SCREEN_SIZE = "QVGA"
○ SCREEN_ORIENTATION = "Portrait"

4. The resource provider is asked to evaluate the query and return a collection of
results. The default result collection size is 1 so in this particular case (given the
type of properties and the operator in use), the resource provider proceeds as
follows: it first tries to search for the exact match, i.e., a resource named
“LayoutManager” with metadata attributes DEVICE_MARKUP_CLASS,
SCREEN_SIZE and SCREEN_ORIENTATION equal to the above. If no such

Figure 16: DeviceMarkupClass sample taxonomy

/

VoiceXmlDevice WapDevice

xHtmlFullDevice

xHtmlDevice

xHtmlBasicDevice

56 of 95 5.3 Technical Overview

resource variant exists, it progressively relaxes the constraint via generalization
relation of the underlying taxonomies, until it finds the closest resource variant.
If there is no resource variant for the “LayoutManager” resource name at all, the
resource provider fires MissingResourceException Java exception.43

5. Please notice that the example includes two variants of the query execution part:
the first one reveals a bit more about the concepts of the framework, while the
second variant demonstrates the shortest possible syntax suitable for the
common usage (in this case equivalent to the first extended syntax).

5.4 Versatile Properties
Properties represent metadata definitions. Each Versatile property has
a unique identification and a data type. This essential information can be
further extended by using one of the semantically richer property sub-types.
The set of property sub-types is extensible, out-of-the-box we provide the
data structures identified in section 4.1 (page 43): controlled vocabulary (an
enumeration), relational property (to represent arbitrary binary relations),
order property and last but not least the taxonomy.

Properties are used in the Versatile framework to represent metadata describing the
actual artifacts. The focus of the framework is on the use of semantically rich property
43 The exact semantics of query processing is described in section 5.7.3 Query Semantics.

Example 7: Instantiating LayoutManager - an end-to-end example

5.4 Versatile Properties 57 of 95

definitions of metadata attributes so that the semantical information captured in the
property definition can facilitate metadata driven search capabilities of the framework.
The framework comes with a set of predefined property types shown on Figure 17 on
page 57. This type hierarchy can be extended as needed: in extreme case, each and
every particular property can declare its own type by extending one of the predefined
types, however, it is expected that generic implementations of the pre-defined property
types will be used in most applications.

Each Property (cz.cuni.versatile.api.Property) has a unique name which is
composed of a namespace, a separator and a local name. Versatile does not impose
a particular naming convention, the structure of the unique name is designed for
compatibility with the frequently used naming schemes like XML namespaces, Java
package names or C++ and CORBA IDL namespaces. Each property also exposes
information about its data type which corresponds to a type defined in terms of the
underlying programming language. Unique identification and data type information
represent the minimum set of requirements each property must satisfy.

Controlled Vocabulary (cz.cuni.versatile.api.ControlledVocabulary) is an
extension of the base property type which adds the possibility to enumerate all allowed
property values, thus further restricting the data type of the property.

Relational Property (cz.cuni.versatile.api.RelationalProperty) allows to
represent a binary relation over the set of property values. Given a pair of property
values, it can determine whether they belong to the binary relation or not, i.e., whether
the two values are related in terms of the relation or not. Besides this, there is a set of
methods which allow to query the usual algebraic properties of the relation: reflexivity,
symmetry and transitivity. The relational property type can be employed for capturing
relations between elements of ontologies and meta-models when projecting them

Figure 17: Versatile built-in property type hierarchy

Property

+getNamespace(): String
+getLocalName(): String
+getUniqueName(): String
+getSeparator(): String
+getType(): Class

RelationalProperty

+isReflexive(): boolean
+isIrreflexive(): boolean
+isSymmetric(): boolean
+isAntisymmetric(): boolean
+isAsymetric(): boolean
+isTransitive(): boolean
+contains(dom: Object, rng: Object): boolean

ControlledVocabulary

+getValueSet(): java.util.Set
+iterator(): java.util.Iterator

Equivalence

OrderProperty

+comparator(): java.util.Comparator
+comparable(entryA: Object, entryB: Object): boolean
+isTotalOrder(): boolean
+isPartialOrder(): boolean
+isStrictOrder(): boolean

Taxonomy

+getRoot(): Object
+getParents(entry: Object): java.util.Set
+getChildren(entry: Object): java.util.Set
+getAncestors(entry: Object): java.util.Set
+getDescendants(entry: Object): java.util.Set
+isRoot(entry: Object): boolean
+isParent(entry: Object, child: Object): boolean
+isChild(entry: Object, parent: Object): boolean
+isAncestor(entry: Object, descendant: Object): boolean
+isDescendant(entry: Object, ancestor: Object): boolean
+getLCA(entries: Object): Object
+getAncestorIterator(entry: Object, cmp: java.util.Comparator): java.util.Iterator

TreeTaxonomy

+getParent(entry: Object): Object
+getAncestorChain(entry: Object): java.util.List
+getAncestorIterator(entry: Object): java.util.Iterator

58 of 95 5.4 Versatile Properties

(flattening) to the data model of the Versatile framework, of course, it can be used for
representing binary relations over a set in general.

Equivalence (cz.cuni.versatile.api.Equivalence) is a specialization (restriction)
of the relational property following the usual definition of equivalence relation in
algebra: a relation which is reflexive, symmetric and transitive. The purpose of this
property type is to be able to factorize the value set of a particular underlying data type
into equivalence classes as needed in a particular context: some property values may be
considered equivalent in one context while may need to be distinguished in another
context. In Versatile, the developer can construct as many logical “views” (equivalence
properties) as needed to represent different perspectives on the same source value set.

Order Property (cz.cuni.versatile.api.OrderProperty) is another specialization
of the relational property used to define both partial and total order relations. In
algebraic terms, the relation must be antisymmetric and transitive, in case of strict
ordering (e.g. < or >) it must be also irreflexive (commonly used ≤ and ≥ are reflexive).
Total order relation requires all values to be comparable which may not be the case for
the partial order. In Versatile, when using the term order, we always mean partial
order, total order is always referred to explicitly. Order properties have many
applications, for example when we want to express constraints like: the Java midlet
requires MIDP 2.0 or newer; we may go ahead and define JavaPlatformSuccessor order
property, backed by the JavaPlatform value set as depicted on Figure 9, page 35, by
explicitly stating which value pairs are considered to belong to the successor relation.
By the way: given the statement “x” or newer we need to make sure the relation is
reflexive so that the pair (“MIDP 2.0”, “MIDP 2.0”) is also a member of the relation.

Taxonomy (cz.cuni.versatile.api.Taxonomy) and its specialization, the tree
taxonomy (cz.cuni.versatile.api.TreeTaxonomy), are crucial elements of the
Versatile data model. They both enable construction of properties with hierarchical
classifications of their value sets. The only difference between the two is, that the tree
taxonomy does not allow a node to have mode than one parent. The ability to
taxonomize a value set of a property into a hierarchical classification is a pre-requisite
for enabling constraint relaxing via generalization applied when matching device
capabilities (requirements) to provisions of the individual software artifacts. The idea is
to express requirements as concrete as possible while annotate software artifacts with
taxonomy values as generic as possible, then, when searching for a resource suitable for
a particular device, the requirements can be incrementally generalized until an artifact
closest to the requirements is found.

It is important to note that Taxonomy is a subtype of OrderProperty: the hierarchical
classification encoded by the taxonomy imposes a partial order on the property values.
The root of the taxonomy is the all-encompassing universal concept, all its sub-concepts
(children) are then “<” (less-than) as compared to their parent; this applies recursively
throughout the taxonomy.

The careful reader certainly already noticed, that most of the property examples in this
paper are depicted as taxonomies, this only demonstrates the importance of the property
type to the author. More examples follow, complemented by a detailed explanation of
the taxonomy-based requirement/provision matching algorithm.

5.4 Versatile Properties 59 of 95

Relational Operators

The Versatile framework further facilitates manipulation with relational properties and
creation of new properties based on the existing ones by providing a library of basic
relational operators (Figure 18 above) located in package cz.cuni
.versatile.api.relops. The library can be used to create new properties in
a declarative way by applying the common algebraic operators like Inverse-Of,
Reflexive-Closure, Symmetric-Closure, Transitive-Closure and Total-Order. The
framework allows to register custom implementations of these algebraic operators with
the factory class RelationalOperatorsRegistry on per-property basis – using the
property's unique name. If a custom implementation is registered for a given property, it
overrides the generic implementation provided by the framework. For further details
please refer to the API reference manual.

5.5 Delivery Context and Value Provider

Delivery Context
Delivery context (cz.cuni.versatile.api.DeliveryContext) serves as a
property registry and it is in some sense the central entity of the framework:
a property, to become available in Versatile, needs to be registered to the
delivery context alongside its value provider or a property mapping. All
used properties must be registered in the delivery context and it should be
the only source of versioning relevant meta data and configuration settings.
Due to its exclusive role in the framework, it can be used to track
dependencies of the application on the external metadata sources.

Figure 19: Delivery Context extending Property Registry

PropertyRegistry

+hasProperty(prop: Property): boolean
+hasProperty(uniqueName: String): boolean
+getProperty(uniqueName: String): Property
+isMappedProperty(prop: Property): boolean
+getPropertyMapping(prop: Property): PropertyMapping
+registerProperty(prop: Property, pm: PropertyMapping)
+unregisterProperty(prop: Property)
+getProperties(): Set

DeliveryContext

+registerProperty(prop: Property, vp: ValueProvider)
+getValueProvider(prop: Property): ValueProvider
+hasValue(prop: Property): boolean
+hasValue(uniqueName: String): boolean
+getValue(prop: Property): Object
+getValue(uniqueName: String): Object

Figure 18: Relational Operators Library

RelationalOperator
InverseOf

+inverseOf(source: RelationalProperty): RelationalProperty

SymmetricClosure

+symmetricClosure(source: RelationalProperty): RelationalProperty

TotalOrder

+totalOrder(source: OrderProperty): OrderProperty

TransitiveClosure

+transitiveClosure(source: RelationalProperty): RelationalProperty

ReflexiveClosure

+reflexiveClosure(source: RelationalProperty): RelationalProperty

RelationalOperatorsRegistry

+registerImplementation(uniqueName: String, implementation: RelationalOperator)
+getReflexiveClosure(uniqueName: String): ReflexiveClosure
+getSymmetricClosure(uniqueName: String): SymmetricClosure
+getTransitiveClosure(uniqueName: String): TransitiveClosure
+getInverseOf(uniqueName: String): InverseOf
+getTotalOrder(uniqueName: String): TotalOrder

60 of 95 5.5 Delivery Context and Value Provider

There can be more than one delivery context instance in the application, reflecting the
logical structure of the application, in such a case, these instances are independent and
logically correspond to multiple instances of the Versatile framework. If a property is
used in multiple delivery contexts, it needs to be registered to each delivery context
separately.

The main purpose of using derived (mapped) properties in the DeliveryContext is to
transform raw (typically domain-specific -- e.g. UAProf) meta-data into pre-processed
application-specific properties which better correspond to the inherent logic of the
application. The transformations in such a case are typically value adding (information
adding): e.g. canonicalization, hierarchical classification. Alternatively, the usage of the
property mappings can be as simple as property renaming (aliasing) due to the need to
use multiple overlapping vocabularies (namespaces).

Value Provider

Property values can be obtained in two different ways: via property mappings or
value providers. Property mappings are discussed in a separate section, so let us focus
on value providers first. The role of the value provider concept
(cz.cuni.versatile.api.ValueProvider) is to represent an abstract attribute value
getter, which can be chained in order to implement a particular fall-back strategy or
a resolution policy: when a value provider chain is requested to retrieve a property
value, value providers in the chain are visited one by one until the property value is
determined. Value provider implementations are specific to the underlying metadata
source, for example an HTTP request, HTTP session, user profile, cookie, CC/PP or
a configuration file. Each property can have a its own value provider chain thus
allowing to define property-specific rules.

Example 8 on page 61 demonstrates construction of such a property-specific value
provider chain and registering it with a property to the delivery context. Please note, it is
not an ad-hoc example: in fact, it is an implementation of the resolution rules described
in section 2.4.1 (Metadata Consolidation) in the Versatile framework applied to the
locale taxonomy introduced in 2.1.2 (CATCH 2004), Figure 1. The values of the locale
taxonomy are instances of standard java.util.Locale class, however, the taxonomy
wrapper is needed to represent the taxonomy semantics in the Versatile framework.
Delivery context is provided by the framework. The individual value provider
implementations represent custom environment specific extensions of the

Figure 20: Value Provider, its abstract and concrete implementations

ValueProvider

+getAttributeName(): String
+getValue(): Object
+hasValue(): boolean
+getLocalValue(): Object
+hasLocalValue(): boolean
+getDefault(): ValueProvider
+toPreferenceChain(): PreferenceChain

AbstractValueProvider

<<create>>+AbstractValueProvider(attrName: String, defaultValue: ValueProvider)
+getAttributeName(): String
+getValue(): Object
+hasValue(): boolean
+getDefault(): ValueProvider
+toPreferenceChain(): PreferenceChain

ConstantVP

<<create>>+ConstantVP(value: Object)
+getLocalValue(): Object
+hasLocalValue(): boolean

5.5 Delivery Context and Value Provider 61 of 95

AbstractValueProvider provided by the framework (even though in this particular
case they are generic enough to consider them to make them a part of the framework in
the future).

When describing value providers, it is important to briefly mention two special data
structures supported by the framework, which can be used to represent property values:
preference chain (cz.cuni.versatile.api.PreferenceChain) denotes an ordered list
of values and preference bag (cz.cuni.versatile.api.PreferenceBag) denotes an
unordered set of values. For those familiar with RDF: these structures correspond to
RDF:Sequence and RDF:Bag respectively. In general, a ValueProvider for any
Property, regardless of its data type, can return PreferenceChain or PreferenceBag,
i.e., a collection of multiple values, instead of a single value of the property data type.
Given the Example 8 above, the ctx.getValue(locale) may return PreferenceChain
of locales corresponding to the prioritized sequence of user preferences, for example,
taken from the user's web browser as shown on Figure 7 on page 33.

5.6 Property Mappings
Property mappings are used to calculate values of derived properties via
transformations from other properties already registered in the delivery
context. Mappings are used to implement canonicalization or other
necessary metadata enrichment, for example to map values from an RDF
Literal property (an unconstrained string) to a well-defined application-
specific taxonomy. By using term derived we mean only the property value
is derived (inferred by calculation); not necessarily its data type.

Example 8: User locale value provider chain example (resolution rules/fall-back)

Figure 21: Transformational Property Mappings

PropertyMapping

+providesReverse(): boolean
+getDomainSet(): Set
+getRangeSet(): Set
+getReverse(): PropertyMapping

Many2ManyMapping

+getDomain(): Property[]
+getRange(): Property[]
+mapValue(dom: Object[]): Object[]

Many2OneMapping

+getDomain(): Property[]
+getRange(): Property
+mapValue(dom: Object[]): Object

One2ManyMapping

+getDomain(): Property
+getRange(): Property[]
+mapValue(dom: Object): Object[]

One2OneMapping

+getDomain(): Property
+getRange(): Property
+mapValue(dom: Object): Object

62 of 95 5.6 Property Mappings

Property mappings implement transformational maps between properties. They allow to
separate property value acquisition (implemented by value providers) and subsequent
transformations (like canonicalization, semantical enrichment or data extraction). This
separation of concerns is very important for transparency and reusability.

Referring to the discussion in section 4.3 Design Conclusion, property mappings are
exactly the placeholder in the Versatile Framework to plug in an external inference
(rule) engine if applicable to a particular property mapping. In general, it is assumed,
that the property mappings are implemented directly in Java, in cases a declarative
engine is being employed, it needs to be embeddable into Java. In any case, the property
mappings are completely opaque to the framework user who can only see the mapping
signature: set of domain and range properties.

The interface PropertyMapping in package cz.cuni.versatile.api.relops
represents a generic a transformational map from a set of properties to another set of
another properties. Mathematically speaking, it is an n-ary function (P1, P2, P3,
..., Pn) -> (P1', P2', P3', ...Pm), n and m being positive integers, so that given
input values (x1:P1, ..., xn:Pn) it calculates a tuple of output values (y1:P1',
..., ym:Pm). Actually, the PropertyMapping interface serves only as a marker
interface and for meta-modeling capabilities like property dependency tracking. The
actual transformations need to be based on one of its sub-types. The reason behind the
chosen type hierarchy organization is to make implementation of the most common
mappings (e.g. the unary function) easier.

One2OneMapping (cz.cuni.versatile.api.relops.One2OneMapping) represents
unary function (P1) -> (P2) transforming values of one property to values of another
property. It can be used for canonicalization and/or to generate taxonomies (hierarchical
classifications) out of the raw unchecked meta data values (semantical enrichment). It is
expected to be the most common property mapping. The Versatile package provides
a generic implementation of the most essential One2OneMapping: the IdentityMapping
(identity function), usable for property renaming/aliasing.

One2ManyMapping (cz.cuni.versatile.api.relops.One2ManyMapping)
represents information extraction mapping Px -> (P1, ..., Pn). There are quite a
few instances of existing metadata properties which contain composite literal values or
combine multiple semantical entities into a single named property and in turn require
further parsing to extract the individual semantical entities – the actual metadata
properties. For example:

● HTTP header User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.8.1.4) Gecko/20070515 Firefox/2.0.0.4

● UAProf attribute SoftwarePlaform/JavaPlatform can contain both
Configuration/CLDC-1.0 versus Profile/MIDP-2.0 thus combining Profile
and Configuration under one UAProf attribute (see also Figures 8 and 9)

From the perspective of semantics, One2ManyMapping can be replaced by a set of unary
mappings. The motivation for introducing this type of mapping is to be able to acquire
and parse the source property value only once and then extract all the output data values
in one pass. This can significantly improve performance when multiple properties
derived from a single source property are used in the same query template, which means
they need to be evaluated at the same time.

5.6 Property Mappings 63 of 95

Many2OneMapping (cz.cuni.versatile.api.relops.Many2OneMapping)
corresponds to an ordinary n-ary function (P1, P2, P3, ..., Pn) -> Pm. It is used if
there is a need to combine several simpler properties into a single derived property and
then use this sythesized property in the versioning code. In Example 9 and taxonomy on
Figure 16, page 65, we introduced DeviceMarkupClass taxonomy which for a given
device pin-points its most natural (preferred) markup class (a very high-level
classification indeed). In order to compute values of the hypothetical
DeviceMarkupClass property, we would need to take into account the following source
UAProf properties: BrowserUA (HtmlVersion, XhtmlVersion, BrowserVersion,
BrowserName) and WapCharacteristics (WapVersion, WmlVersion,
WmlScriptVersion).

Many2ManyMapping (cz.cuni.versatile.api.relops.Many2ManyMapping)
represents the most generic property mapping as it implements the general n:m arity
map described above, i.e., a complex transformation between two sets of properties.
However, its usage should be considered carefully, and justify its usage, because if
overused, the application designer may end-up with few general purpose complex
mappings, which goes against the philosophy of the framework: modularity and
reusability of small and comprehensible code units.

5.7 Query and Query Template

Query (cz.cuni.versatile.api.Query) interface is a data structure representing
a multi-variant resource query. It encapsulates all the information necessary to retrieve
a resource which possibly exists in many different variants, revisions and flavors
(resource means a versioned entity – a set of artifacts – not a particular version/variant
of a resource – an individual artifact):

● resource name (mandatory) which uniquely identifies a resource in the scope of
a particular ResourceProvider (5.7.5) instance. Please note, that unlike
property names, resource names are not globally unique in Versatile.

● ordered list of property predicates (optional, empty by default) which specifies
the metadata constraints and/or preferences (5.7.1)

● n-best size (optional, default = 1) which is the maximum number of results to
return
(result set capping)

● score threshold (optional, default = 0.0) which determines the lowest acceptable
score value44, all values are accepted by default

● scoring factor (optional, default = 0.99) which determines the relative
significance of individual property predicates when calculating the score of
individual result entries

44 Score measures how closely a particular resource entry matches the query, this only applies to queries
which use constraint-relaxing operators like bestMatch which may return approximate matches.

64 of 95 5.7 Query and Query Template

Semantics of the individual query attributes is explained in the following sections,
before we get there, let us make couple of remarks: In a typical setup, Query instances
are not created directly by the developer they are rather instantiated as a spin-off of
a reusable QueryTemplate object. Query and ResultSet (5.7.2) data structures can be
seen as the messages of the communication protocol between the framework and
ResourceProvider implementations. There are also the performance considerations
reflected in the framework design: Query is meant to be an immutable object: once it
gets instantiated, it never changes, Query implementations should override
Object.equals() and implement an efficient comparison algorithm to detect whether
two queries are identical, this enables ResourceProvider implementations to improve
performance by result caching.

Query Template (cz.cuni.versatile.api.QueryTemplate) represents the actual
Versatile application programming interface (API) used by the application developer to
express the metadata constraints. Once the framework is configured by setting up the
delivery context and relational operators registry, the actual usage of the framework
means defining a set of query templates for individual resource classes and categories
(static resource bundles, various class or component factories, data retrieval) and then
triggering queries for individual resources and passing them to the corresponding
resource provider. The instances of the QueryTemplate class serve the following
purposes:

1. define a set of metadata constraints and preferences (an ordered list of
predicates)

2. define the query evaluation preferences (N-best, score threshold, scoring factor)
3. allow to re-use the same settings for many different queries (with different

resource name)
4. allow to fully automate property value acquisition and substitution: during query

instantiation (newQuery method), the property values for each predicate are
automatically retrieved from the delivery context the query template is linked to.

Figure 22: Query, QueryTemplate and Property Predicate

Property

PropertyOperator

+getId(): int
+getName(): String
+isIntrinsic(): boolean
+isExtrinsic(): boolean
+isAssertive(): boolean

PropertyPredicate

+getProperty(): Property
+getOperator(): PropertyOperator
+getArgument(): Object
+getPropertyValue(): Object

+property

1

1

Object

+argument
0..1

Query

+getNBest(): int
+getScoreThreshold(): double
+getScoringFactor(): double
+getResourceName(): String
+getPredicates(): List

QueryTemplate

+setNBest(nbest: int)
+setScoreThreshold(threshold: double)
+setScoringFactor(scoringFactor: double)
+getDeliveryContext(): DeliveryContext
+addPredicate(pp: PropertyPredicate)
+add_Equal(uniqueName: String)
+add_GT(uniqueName: String)
+add_LT(uniqueName: String)
+add_GE(uniqueName: String)
+add_LE(uniqueName: String)
+addAssert(uniqueName: String)
+addAssertInv(uniqueName: String)
+addAssertLevel(uniqueName: String, level: int)
+addEquivalent(uniqueName: String)
+addComparable(uniqueName: String)
+addIsParent(uniqueName: String)
+addIsChild(uniqueName: String)
+addIsAncestor(uniqueName: String)
+addIsDescendant(uniqueName: String)
+addBestMatch(uniqueName: String)
+newQuery(resourceName: String): TemplateBasedQuery

TemplateBasedQuery

+getQueryTemplate(): QueryTemplate

1 0..*

+propertyValue
1

5.7 Query and Query Template 65 of 95

Because the sets of property types and property operators are extensible in Versatile, the
QueryTemplate interface provides a generic method for adding property predicates
(addPredicate) and a set of methods allowing a short-hand notation for all the built-in
operators.

Example 9 above demonstrates a typical usage of query template in the application. It
first sets-up a set of metadata preferences applicable for retrieving static strings from
a resource bundle. The example is taken from a multi-modal application and therefore
the application labels and messages not only depend on the user locale (language,
country) but also on the device class (speech versus GUI) and last but not least screen
size – to use shorter messages on small-screen devices. The template uses biased
scoring factor to avoid mixing different languages in the user interface. (The scoring
factor parameter is explained in section 5.7.4.)

5.7.1 Property Predicate and Property Operator

Property Predicate (cz.cuni.versatile.api.PropertyPredicate, Figure 22, page
64) is a data structure representing a single metadata constraint or preference45. It holds
a reference to the property definition (Property), the operator (PropertyOperator) to
apply to the property value and optionally some additional operator-specific arguments
encapsulated in a single data structure represented by the argument attribute
(java.lang.Object). While the property predicate is a part of a query template, the
propertyValue (java.lang.Object) is not set; it is set only upon query creation,
when the predicated is cloned as a part of newly created Query instance and the current
property value is acquired from the delivery context. (The cardinality depicted on the
UML diagram on Figure 22 only applies to queries, not to query templates.)

45 Distinction between constraint and preference depends on the semantics of a particular property
operator (assertive operators are used for constraints, contraint-relaxing for preferences).

Example 9: Query Template reuse, string resources, biased scoring

66 of 95 5.7 Query and Query Template

Property Operator (cz.cuni.versatile.api.PropertyOperator, also Figure 22)
represents a relational or functional operator to evaluate by the resource provider when
matching the property value against the artifacts' metadata annotations in the resource
repository. Besides machine processable unique identifier and human readable operator
name it contains two meta-attributes which help the resource provider to understand
how to process a particular operator:

1. intrinsic/extrinsic flag
2. assertive flag

Intrinsic operators use methods of the actual property values46 for comparison, so they
rely on the existing methods of Java objects like Object.equals() or
Comparable.compareTo(). Extrinsic operators rely on the relations externally provided
by the (semantically richer) Versatile properties, for example Equivalence or
OrderProperty to relate to the example given for the intrinsic operators. The assertive
flag determines whether the operator is assertive (the predicate must evaluate to true in
order to include the resource in the result set) or whether the operator allows for
approximate matching (fall-back, constraint relaxing) which is significant during query
evaluation as described in section 5.7.3 Query Semantics.

The Versatile framework comes pre-loaded with a set of built-in operators which act
upon the pre-defined property types described in section 5.4 Versatile Properties. The
built-in operators are defined in the class cz.cuni.versatile.core
.PropertyOperators implementing the Property-Operator interface. Table 2 below
lists all the built-in operators alongside their meta-attributes. For details on individual
operators, please refer to Versatile 1.0 API Reference [VERSAPI], we discuss in detail
only the most significant operators and their semantics throughout this section.

Operator Intrinsic Assertive Applicable To

= Yes Yes Property
> Yes Yes Property
< Yes Yes Property
>= Yes Yes Property
<= Yes Yes Property

assert No Yes RelationalProperty

assertInv No Yes RelationalProperty

assertLevel No Yes Taxonomy

equivalent No Yes Equivalence

comparable No Yes OrderProperty

isParent No Yes Taxonomy

isChild No Yes Taxonomy

isAncestor No Yes Taxonomy

isDescendant No Yes Taxonomy

bestMatch No No Taxonomy

Table 2: Built-in property operators

46 Property values are all instances of java.lang.Object

5.7 Query and Query Template 67 of 95

First, before we start describing the individual property operators, let us explain how
property predicate evaluation actually works: when a query is created out of a query
template, the query template acquires the property values for all properties used in the
query template using the delivery context and assigned the values into the property
predicates. When the query reaches the resource provider, each property predicate has at
least the following 3 attributes:

1. property P
2. property operator po
3. property value PV

When matching the property predicate against its resource repository, the resource
provider compares the actual property value (PV) and a candidate resource property
value (RV) using the property operator po. Of course, the order of PV and RV is
significant for many operators, the convention used by the Versatile framework
corresponds to the following infix notation:

RV po PV

For example: PV:6, po:<=, RV:4 is interpreted as 4 <= 6 which evaluates to true.

The set of intrinsic operators (=, >, <, >=, <=) is provided mainly for compatibility with
ordinary semantically loose properties, which correspond to the base Property type,
such a property can be created by taking any data type and assigning it a unique
identifier – without any extra work. Understandably, this kind of properties is not the
main focus of this work.

The operators assert and assertInv rely on RelationalProperty.contains(x,
y) to assert whether a property predicate holds (evaluates to true) or not. Assert
corresponds to invoking contains(RV, PV), assertInv to
InverseOf(p:RelationalProperty).contains(RV, PV) which is equivalent to
invoking contains(PV, RV). The operators are applicable to all sub-types of
RelationalProperty: using assert together with a taxonomy property refers to the
implicit order of the taxonomy, contains(RV, PV) evaluates to true if and only if
isDescendant(RV, PV) evaluates to true. The equivalent operator also maps to
RelationalProperty. contains(x, y), but is only applicable to Equivalence
properties, it only serves as a syntax sugar and for comprehensibility of the resulting
code.

The comparable operator maps to OrderProperty.comparable(RV, PV), its
purpose is to check whether the two values are comparable given a partial order
property. For total order properties, it always evaluates to true.
The set of the four taxonomy-dependent operators (isParent, isChild,
isAncestor, isDescendant) directly maps to the corresponding methods of the
Taxonomy property type. They correspond to the four common relations which are
derivable from a taxonomy. The purpose of presenting these as separate operators, is to
avoid the need to derive the corresponding relational properties from a source taxonomy
property every time there is a need to leverage one of these common relations.

All the property operators presented so far belong to the relational operators – they
correspond to basic operations acting upon a binary relation. In the rest of this section
we present two functional operators, whose behavior is more complicated from the
algorithmic point of view. The semantics of the operators described in the following

68 of 95 5.7 Query and Query Template

paragraphs refers to the semantics of the individual operators, the semantics of an entire
query is explained in section 5.7.3 Query Semantics.

bestMatch is extrinsic constraint-relaxing operator. It is probably the most powerful
and useful Versatile operator: it starts with a given context node – the actual property
value PV obtained from the ValueProvider and tries to perform the exact match, if no
resource is found, it uses Taxonomy#getAncestorIterator() to generate a sequence
of candidates in ascending order, leveraging the classification hierarchy of the
taxonomy. With properly designed taxonomies in place, one can thus easily implement
quite sophisticated fall-back strategies using hierarchical defaulting via property value
generalization. The operator is used to express preferences rather than strict constraints.

The beauty of combining the bestMatch operator with hierarchical classification of a
taxonomy is, that if there is only one variant of a particular resource, it does not need to
be annotated at all: no matter what property values come in, at the end the default
version can always be fetched; only those resource variants intended for a particular
sub-class of property values need to be annotated. This allows to start application
development and complete an end-to-end prototype with the default set of resources and
then incrementally refine selected resources by providing multiple variants as needed to
improve the user's experience.

Let us reuse the ScreenSize taxonomy on page .

Let us assume the property value PV = QVGA,

the following search sequence will be generated:

1. QVGA

2. PDA, SmartPhone

3. CompactDevice, ScreenPhone

4. “/” (root = property value not set = the universal concept)

Example 10: bestMatch example using ScreenSize taxonomy

Another example using the UNSPSC taxonomy (http://www.unspsc.org/),

given PV = 43232203 (File versioning software)

the following search sequence will be generated:

1. 43232203 (File versioning software)

2. 43232200 (Content management software)

3. 43230000 (Software)

4. 43000000 (Information Technology Broadcasting and Telecommunications)

5. “/” (root = property value not set = the universal concept)

Example 11: bestMatch example using the UNSPSC taxonomy

5.7 Query and Query Template 69 of 95

While the bestMatch is suitable for most situations, sometimes it may not be desirable
to generalize all the way up to the default, unannotated resource variant. The
assertLevel operator has been introduced as a way to constrain the bestMatch by
providing an upper-bound. Because at the time of designing a particular query template
the actual property value is not known, we can not specify the upper-bound using a
constant – we do not know which branch of the taxonomy will be effective during the
query evaluation. Therefore the assertLevel operator introduces the level attribute to
specify the distance (in the taxonomy hierarchy) between the property value PV and the
allowed resource property value RV as follows:

● level = 0 - equivalent to the assert operator
● level > 0 - absolute distance from the root of the taxonomy
● level < 0 - relative distance from the context node (PV)

The Example 12 below taken from the Versatile 1.0 API Reference [VERSAPI]
demonstrates the effect of assertLevel applied to bestMatch, please compare to the
Example 11 above.

PV = 43232203 (File versioning software), bestMatch and assertLevel(2),

the following search sequence will be generated:

1. 43232203 (File versioning software) [level 4, relative 0]

2. 43232200 (Content management software) [level 3, relative -1]

3. 43230000 (Software) [level 2, relative -2]

The entry 43000000 (Information Technology Broadcasting and
Telecommunications) wont' match because its taxonomy level is equal to 1.

PV = 43232203 (File versioning software), bestMatch and assertLevel(-1),

the following search sequence will be generated:

1. 43232203 (File versioning software) [level 4, relative 0]

2. 43232200 (Content management software) [level 3, relative -1]

Example 12: assertLevel and bestMatch example using the UNSPSC taxonomy

70 of 95 5.7 Query and Query Template

5.7.2 Result Set and Resource Entry
Result Set is an ordered collection of Resource Entries. The primary order
of the collection is determined by the result score of individual resource
entries in the collection. Score measures how closely a particular resource
entry matches the query

The query template interface allows to set the N-best size attribute which instructs the
resource provider to return multiple results corresponding to a particular query in cases
there is more than one entry in the resource repository which matches the query. In
addition to that, because the framework supports the constraint-relaxing feature, the
results may not exactly match the corresponding query; sometimes, a need to inspect the
results may arise in order to debug or fine-tune the application, therefore there is a need
to capture the actual metadata attributes of the resources retrieved by the resource
provider. The Versatile framework uses result set and result entry to represent
implement these requirements.

The cz.cuni.versatile.api.ResultSet interface represents the N-best result list
produced by a ResourceProvider in a response to a particular Query. The ResultSet
is ordered in descending order with the respect to the score of individual
ResourceEntry items. ResultSet itself implements the interface ResourceEntry and
thus exposes two facets to its users:

1. an ordered collection of ResourceEntry items

2. a shortcut accessor to the first (0-index) ResourceEntry

This approach has been chosen because of the default N-best size is equal to 1, and at
the same time, a ResultSet always contains at least one item. In a typical situation, the
user does not need (and does not want) to deal with a collection of result items and just
wants to pick the first item.

The cz.cuni.versatile.api.ResourceEntry interface represents an individual item
of the N-best result list. The ResourceEntry object contains not only the resource itself
but also its metadata annotations (property/value pairs) and the score of the
ResourceEntry with the respect to the corresponding Query.

Figure 23: Result Set and Resource Entry

ResultSet

+size(): int
+iterator(): java.util.Iterator
+get(i: int): ResourceEntry
+getQuery(): Query

ResourceEntry

+getResultSet(): ResultSet
+getValue(): Object
+getProperties(): Map
+getScore(): double
+getIndex(): int

1..*

5.7 Query and Query Template 71 of 95

5.7.3 Query Semantics
Now, when we have defined and discussed all the prerequisites, we can
finally step ahead and describe the formal semantics of Versatile query
language. When describing the semantics, we follow top-down approach: in
this section: we describe the overall query semantics while avoiding to go
into details regarding an important part of it: the result entry score and the
Versatile Scoring Function, which is discussed separately in the following
chapter. For now, we assume there is a scoring function, which calculates
score for each resource entry in the result set and measures the quality of the
individual entries with the respect to the query – how closely a given entry
matches the query.

The query evaluation algorithm presented on Figure 24 above represents the
operational semantics of the query, it should not be taken as a prescription for actually
implementing the query evaluation in practice – all kinds of heuristics and optimization
strategies can be put in place to speed-up query evaluation and make it less resource-
intensive – as long as the alternative implementation gives the same results as the
algorithm described in this section.

Figure 24: Query Operational Semantics

FetchResources

ApplyAssertiveConstraints

[resourceName]

[unfilteredEntrySet]

[else]

MissingResourceException

[unfilteredEntrySet.isEmpty()]

[preFilteredEntrySet]
[preFilteredEntrySet.isEmpty()]

ApplyScoringFunction

[else]

[preSortedBucketSet]

ApplySecondaryOrder

[sortedEntryList]

ApplyNBest

[sortedResultSet]

[(score < threshold and sortedResultSet.size() > 0) or sortedResultSet.size() = N-Best]

Evaluate all predicates with
assertive operators.
For predicates using bestMatch
apply the ancestor rule.

If there are no predicates
using constraint relaxing
all entries have EXACT_MATCH
score which is equal to 1.

If all "buckets" are of size 1, i.e.,
scores of all entries are unique,
secondary sorting is not needed,
it just flattens the sorted bucket set.

[score < threshold and sortedResultSet.isEmpty()]

72 of 95 5.7 Query and Query Template

Step 1. Fetch Resources: given a resource name, all variants of the resource are
retrieved

Step 2. Apply Assertive Constraints: all predicates with assertive operators (5.7.1)
are applied, only those resource variants where all predicates evaluate to true
are kept in the result set. In addition to that, for all predicates using the
constraint-relaxing bestMatch operator, assert that (RV = PV or
Taxonomy.isAncestor(RV, PV)) = true, i.e., for each resource entry
annotation value RV and property value PV, make sure that either RV = PV
(exact match) or RV is a generalization of PV – reachable by constraint
relaxing. Only those resource variants where the above condition evaluates to
true are kept in the result set.

Step 3. Apply Scoring Function: if there are no predicates using constraint-relaxing
operators like bestMatch, the step can be skipped as all resource variants have
score equal to 1 (exact match); otherwise the scoring function (5.7.4) is applied
which ranks the resource variants with the respect to the preference predicates.

Step 4. Apply Secondary Order: if the scoring function is not injective, i.e., two or
more entries attain the same score, the secondary order needs to be applied to the
entries with the identical score. The secondary order applies lexical ordering
following the order in which the properties appear in the predicate list (order of
significance). To compare values of individual properties, the following fall-
back strategy is used:
1. for an OrderProperty, the order the property is applied, in cases of a partial

order, the RelationalOperatorsRegistry.getTotalOrder() is applied to
avoid ambiguity.

2. for other properties, sorting leverages the standard Java library routines for
sorting.

Step 5. Apply Score Threshold & N-best Filtering: the filter receives resource
entries one by one in descending order and stops processing by firing
MissingResourceException if the score does not pass threshold and the
number of collected items is equal to zero; it stops processing by returning
results as soon as one of the conditions is met:
1. the score of the incoming entry is lower than the score threshold and the

number of collected items is greater than zero
2. the number of collected items reaches the N-best setting

The two special data structures preference bag and preference chain (see page 61) are
not specifically mentioned in the steps above due to the brevity reasons. The table
below summarizes their impact on individual phases of the query evaluation. While the
preference bag only brings in more acceptable values, the preference chain overrides the
property-defined order. Even more importantly, preference chain overrides the
taxonomy in case of the bestMatch operator and the preference chain itself acts as a
taxonomy: the first entry being a leaf node, the last entry being the root node and
together with the intermediate nodes forming an upward chain without any branches.

5.7 Query and Query Template 73 of 95

Preference Bag Preference Chain

Assertive Best Match Assertive Best Match

Step 1. no impact no impact no impact no impact

Step 2. logical OR logical OR logical OR overrides taxonomy

Step 3. no impact no impact no impact overrides taxonomy

Step 4. no impact no impact overrides property order overrides property order

Step 5. no impact no impact no impact no impact

Table 3: Semantics of PreferenceBag and PreferenceChain

5.7.4 The Scoring Function
Score measures how closely a particular resource entry matches the query:
Due to the framework's capability to execute approximate matching in
addition to standard exact matching, we need to measure the quality of
results with the respect to the original query. Higher score represents
a better quality result.

The scoring function is designed in the way, so that the score of a particular resource
entry is on the scale (0.0, 1.0>. The value 1.0 is called the exact match score and it
means that no constraint relaxing (fall-back, generalization) activity took place. For
queries containing only predicates with assertive operators all resource entries in the
result set have exact match score, because the assertive operators have strict binary
behavior: they either evaluate to true and the item is kept in the result set or they
evaluate to false and the entry is removed from the result set, i.e., the assertive
operators have no impact on the resource entry's score.

If a query contains one or more predicates with constraint relaxing operator (e.g.
bestMatch), only those resource entries in the result set which exactly match the query
have the exact match score. Exactly matching a query means, that for all predicates P0

... Pn-1 using bestMatch, the query property value PVi and resource entry property value
RVi are equal. As soon as constraint relaxing takes place, the score is lower than 1.0 and
more a particular resource entry diverges from the query, the score is lower and
converges towards 0.0. The score effectively measures how far is a particular resource
entry from the ideal candidate described by the query.

Another aspect to take into account is the relative significance of the individual
predicates with the respect to the expected score: sometimes we consider all predicates
more or less equally important while in other cases, some soft constraints (preferences)
are much more important than other. We already stated earlier, that when building a
query template, the predicates are added to the predicate list in order of their
significance. This is the way how to tell which preferences are more important than
other. In addition to that, there is a way to express the ratio of relative significance
between subsequently added predicates by adjusting the scoring factor of the query
template object.

74 of 95 5.7 Query and Query Template

All the above can be summarized in a single mathematical formula, which represents
the Versatile Scoring Function applied in Step 3 of the algorithm described in the
previous section. Let:

● P=P0,... , Pn−1 be a vector of property predicates representing a query.

● PV=PV 0, ... , PV n−1 be a vector of property values of the vector P

● RV=RV 0, ... , RV n−1 be a vector of property values (annotations) of
a resource entry

● PV i , RV i represent a distance between PV i and RV i in the taxonomy

●  be the scoring factor in the interval (0, 1>

then the Versatile Scoring Function is defined as:

To better understand how the scoring function has been constructed, let us look at
a special case; let =1.0 (it is called the neutral scoring factor):

Using the neutral scoring factor =1.0 all the property predicates become equally

significant and ∥ PV − RV∥=∑i=0

n−1

PV i , RV i
2 represents the distance47 of the

result entry represented by RV from the original query represented by PV in an N-
dimensional Euclidean space, each property corresponding to one dimension. It is
obvious, that in case of the exact match, the score will be equal to 1 as the distance
between the query and the resource entry is 0. On the other hand, when the distance
between the query and the resource entry grows, the score converges to 0.

Now let us have the second look at the scoring function using slightly different notation:

The effect of the scoring factor becomes more apparent: its impact multiplies with each
dimension and for scoring factor in the interval (0, 1) it makes each subsequent
predicate less significant than its predecessor. For scoring factor greater than 1, the
47 Classical formula to calculate the magnitude of a vector Euclidean vector space

Figure 25: The Versatile Scoring Function

score  PV , RV ,= 1

1∑i=0

n−1

PV i , RV i⋅
i2

Figure 26: The Versatile Scoring Function (expanded syntax)

score  PV , RV ,= 1

1PV 0, RV 0
2PV 1, RV 1⋅2

...PV n−1 , RV n−1⋅
n−12

score PV , RV ,1= 1

1∑i=0

n−1

PV i ,RV i⋅1
i2
= 1

1∑i=0

n−1

PV i , RV i
2

= 1
1∥ PV− RV∥

5.7 Query and Query Template 75 of 95

effect would be exactly opposite, as it would gauge distances in each subsequent
dimension48. The framework comes with three pre-defined scoring factors listed in the
table below:

NEUTRAL_SCORING_FACTOR 1.00 all property predicates are equally significant

DEFAULT_SCORING_FACTOR 0.99 small penalty of this scoring factor effectively prevents
ambiguity of the result scores

BIASED_SCORING_FACTOR 0.10 for shallow taxonomies results in lexical ordering

Table 4: Predefined scoring factors

To better demonstrate the effect of the scoring factor on the value of the scoring
function, we present the following two examples (Example 13 and Example 14), the
first one compares DEFAULT_SCORING_FACTOR to NEUTRAL_SCORING_FACTOR, while the
second one uses BIASED_SCORING_FACTOR. Please note the use of
BIASED_SCORING_FACTOR in to ensure consistency in the use of localized resources in
the user interface.

48 Scoring factors > 1 are not supported by the framework, the same effect can be achieved by adding
predicates to the query template in reverse order and using a scoring factor on the scale (0, 1>

Example 13: Scoring Function Results sorted by Φ = 0.99

76 of 95 5.7 Query and Query Template

5.7.5 Resource Provider
Resource provider consumes a query, searches its underlying repository of
metadata annotated resources and returns the resource (or – depending on
query settings – a list of resources) which most closely corresponds to the
metadata constraints expressed in the query.

Resource provider (cz.cuni.versatile.api.ResourceProvider) consumes a query,
searches its underlying repository of metadata annotated resources and returns the
resource or – depending on the query N-best setting – a list of resources which most
closely correspond to the metadata constraints expressed in the query. The framework
specification does not assume any particular implementation or a data store type for the
annotated resources, the only requirement is that all resource provider implementations
must fully implement the query semantics as described in section 5.7.3 including the
scoring function as per 5.7.4. The implementations of the interface are assumed to be
specialized for a particular role or an environment. For example:

Figure 27: Resource Provider extending Property Registry

PropertyRegistry

+hasProperty(prop: Property): boolean
+hasProperty(uniqueName: String): boolean
+getProperty(uniqueName: String): Property
+isMappedProperty(prop: Property): boolean
+getPropertyMapping(prop: Property): PropertyMapping
+registerProperty(prop: Property, pm: PropertyMapping)
+unregisterProperty(prop: Property)
+getProperties(): Set

ResourceProvider

+get(q: Query): ResultSet
+get(resourceName: String, qt: QueryTemplate): ResultSet
+getValue(resourceName: String, qt: QueryTemplate): Object

Example 14: Scoring Function Results sorted by Φ = 0.1

5.7 Query and Query Template 77 of 95

● a static resource bundle with metadata annotations attached to each variant of
a resource (thus supporting many variants of the same resource label, message or
graphics)

● a class or a component factory (producing pre-configured individual instances
according to selected properties of the delivery context represented in the query)

● a meta-class factory (meta-component factory) (resource name being an
interface name and query constraints used to look-up the most suitable
class/component factory)

● an opaque content transformation/transcoding engine, which instead of
searching for a pre-existing resource, finds the closets transformations it can
execute and returns a result set in the form of transformation handles which,
upon invoking ResourceEntry.getValue() on a particular entry execute the
actual content transformation generating content of the qualities described in the
metadata descriptor of the selected resource entry.

In a typical configuration, we expect multiple purpose-specific ResourceProvider
instances to correspond to a single general-purpose DeliveryContext instance within
a particular application scope (e.g. a module or a component). On the other hand,
resource providers are more-likely to be re-used across multiple application scopes.

The careful reader has probably noticed (Figure 27, above) that the ResourceProvider
interface extends PropertyRegistry and it is in fact a sibling of the DeliveryContext
interface. The reasoning behind that, is to let the user to enumerate all built-in properties
known to a particular ResourceProvider, as well as to register new custom properties
via property mappings. The main purpose of using the property mappings in the
ResourceProvider is to allow for a kind of reverse mapping: The mappings in the
DeliveryContext transform raw domain-specific metadata into cleansed application-
centric data structures. In a perfect world, the resource repositories are tagged using the
application-centric annotations, but this may not be always possible in practice. The
ResourceProvider may need to translate the queries it consumes to the original raw
metadata or a third-party metadata vocabulary: in the example given in section 2.4.2,
Figure 8 and Figure 9, we canonicalize MIDP 1.0, MIDP/1.0, MIDP-1.0 and
Profile/MIDP-1.0 values into MIDP 1.0. In case the resource repository is tagged by
raw data, we need to map MIDP 1.0 back to the original set of entries by constructing a
reverse mapping MIDP 1.0 -> PreferenceBag(MIDP 1.0, MIDP/1.0, MIDP-1.0,
Profile/MIDP-1.0)
An important consequence of the above is, that when registering a mapped property in
the ResourceProvider, the semantics of the PropertyRegistry
.registerProperty(Property, PropertyMapping) is exactly the opposite to the
DeliveryContext: we are not transforming to the mapped property but instead from
the mapped property to the built-in properties of the ResourceProvider.

78 of 95 5.7 Query and Query Template

6 Conclusion 79 of 95

6 Conclusion
6.1 Overview

 Let us start the conclusion of the thesis by re-iterating the key take-away (section 5.1):

The main idea behind the Versatile framework is describing device capabilities
(requirements) and application artifacts (provisions) using semantically rich properties –
mostly hierarchical classifications (taxonomies) – and employing the semantical
information captured in the properties for implementing a best-effort (approximate)
requirements/provisions matching algorithm. Thanks to the application of hierarchical
classifications, the best-effort algorithm can incrementally generalize the requirements
while searching for the artifacts most closely corresponding to device capabilities. This
ability of constraint relaxing via generalization, allows for extremely efficient metadata
annotation of application artifacts: using generic property values for shared resources
while using more specialized property values for resources intended for specific device
clusters or even individual devices. In addition to the above, the framework provides
services for flexible definition of priorities and resolution rules for property value
acquisition from multiple sources and services for property transformations including
canonicalization, information extraction and information synthesis.

6.2 Goals Evaluation

6.2.1 Functional Aspects Evaluation

In chapter 3 (Setting the Goals) we listed the key issues we were aiming to address:

1. Metadata Consolidation (multiple overlapping metadata sources issue)

2. Metadata Canonicalization (inconsistent metadata issue)

3. Level of Abstraction Gap (knowledge representation issue)

4. Domain Expertise Issue (learning curve issue)

5. Best Practices Enforcement (separation of concerns, modularity)

In section 4.1.1 (Functional Considerations) we further detailed the functional aspects of
these requirements. Let us now look in more detail whether and at what extent these
issues are actually being addressed by the Versatile framework presented in this thesis.

1. Metadata Consolidation is dealt with by using the concepts of central delivery context
and chained value providers. The delivery context serves as a one-stop-shop for
retrieving all metadata used for versioning and configuration purposes. The value
provider chain concept allows to setup the metadata resolution rules and policies in a
high-level yet flexible way. The rules are easily modifiable and if needed, they can be
setup uniquely on an individual metadata entity level.

2. Metadata Canonicalization is dealt with by applying the metadata transformations
(property mappings) as a service embedded in both the delivery context and the
resource provider. The transformations, once setup and configured, are completely

80 of 95 6.2 Goals Evaluation

opaque to the application developer and the transformed metadata entities are accessible
in the very same way as the original raw metadata. Moreover, the mapping functions
can evolve and improve without having any disruptive effect on the application code
base.

3. Level of Abstraction Gap is addressed by promoting semantically rich metadata
entities, relational properties, order properties and especially by emphasizing the
hierarchical classifications – taxonomies. The semantical metadata enrichment is
technically implemented using the property mapping mentioned in the paragraph above.
The framework has its unique query apparatus allowing to express the metadata
constraints and preferences in a straightforward and comprehensible way. The key
construct of the query language is the operator for approximate matching which allows
to implement sophisticated constraint-relaxing strategies without tedious coding – only
by employing properly designed metadata taxonomies.

4. Domain Expertise Issue was kept in mind while designing all the aspects of the
framework. The framework is specified in terms of object-oriented API. Its users do not
need to posses knowledge from the domain of meta-modeling and ontologies or more
specifically the knowledge of the Semantic Web technology stack. Besides familiarity
with object-oriented programming, the framework only requires some rudimentary
knowledge of high-school algebra (binary relations) and a grasp of the principle of
hierarchical classification, which is natural to almost all typed object-oriented languages
like C++, Java or C#.

5. Best Practices Enforcement: The framework is designed so that it encourages best
programming practices by applying separation of concerns and emphasizing modularity:
the property value acquisition rules are isolated to value providers, data transformations
are performed by property mappings and constraints are expressed using templates
without specifying the actual property values which helps to raise the level of
abstraction and allows to isolate the versioning code from the application logic and
modularization of versioning rules into individual property mappings.

6.2.2 Technical Aspects Evaluation

In section 4.1.2 (Technical Considerations) we discussed the technical aspects the
framework must address in order to become practically applicable in the problem
domain. This section attempts to evaluate the framework against the technical
considerations – the performance aspects.

Some of the performance considerations are natively built into Versatile:

● Query is an immutable object which lets the Resource Provider to implement
efficient result caching, as long as the content of the resource repository itself is
also immutable.

● Property Mappings contain One2ManyMapping which allows to implement
information extraction maps (parsing and interpreting composite literal values,
see section2.1.1, User-Agent HTTP header example) in an efficient way by
making sure such parsing and interpretation for multiple derived values can
happen in one pass.

The end-to-end process of the Versatile Framework covering both the query creation
from a pre-existing template and query evaluation consists of the following steps:

6.2 Goals Evaluation 81 of 95

1. property value acquisition (value providers)
2. property mappings evaluation (delivery context)
3. property mappings evaluation (resource provider)
4. search & match execution (resource provider)

Property value acquisition performance directly depends on the performance of the
value providers for the individual metadata sources and the number of metadata sources
in use. There is no way the Versatile Framework can improve or control performance on
this level – it is the responsibility of individual value provider implementors.

Property mappings evaluation depends the computational complexity of individual
property mappings as well as depth and breadth of the property mappings dependency
tree. However, there are two possible approaches to improve performance:

1. individual property mappings can implement caching to calculate subsequent
evaluation requests faster – this can be implemented by direct mapping of input
values to output values. The disadvantage of this method is that its success
depends on the implementors of the individual property mappings.

2. (2 &3) delivery context / resource provider (property registry) caching: the
direct map of inputs and outputs is build for entire property mapping
dependency trees. This approach avoids the dependency on the implementors of
the individual property mappings, on the other hand, the number of
combinations can be significantly higher, which may negatively affect memory
footprint and speed of cache searches

Search & match execution can be sped up on the level of entire queries as mentioned
above, thanks to the fact, that Query is an immutable object. In general case, In other
cases, the search & match task can be improved by using algorithm optimized for
a particular constrained Resource Provider:

For example, consider a specific Resource Provider, which only understands a pre-
defined set or properties and none of them is a taxonomy: the only way to pass
a taxonomy value to such a resource provider is to register a property mapping to map
the taxonomy to one of the build-in properties, so the taxonomy value never reaches the
actual search & match phase. It means in turn, that the Resource Provider needs to
implement only a subset of the Versatile operators (for example, there is no need to
implement bestMatch, assertLevel, isChild, isParent, isDescendant, isAncestor, no need
to care about scoring function, etc.). Such a constrained Resource Provider may be
justified in some specific cases and its search & match algorithm can be certainly more
efficient than a generic algorithm with the complete semantics as per section 5.7.3.

In the general case, there are two major tasks in the evaluation of the query (search &
match):

1. “search” the resource variants for a given resource name (Fetch Resources), this
step is completely Resource Provider dependent, assuming a relational database
with an index on the resource name field, the complexity is O(log(n))

2. “match”: filter the set of variants using the constraints and preferences (Apply
Assertive Constraints, Apply Scoring Function, Apply Secondary Order, Apply
N-Best):

82 of 95 6.2 Goals Evaluation

1) Apply Assertive Constraints – O(n x m1), where n is the number of variants,
m1 is the number of assertive predicates

2) Apply Scoring Function – O(n x m2), where n is the number of variants, m2

is the number of constraint relaxing predicates

3) Apply Secondary Order – O (n.log(n) x m) where n is the number of
variants, m is the number of all predicates

4) Apply N-Best – O(n)

As a conclusion of this section, we claim, that the Versatile Framework carefully
addresses the performance aspects, however, there are too many unknown variables –
dependencies on the external (user provided and/or third party) components whose
impact can not be evaluated in a general case without knowing the detailed
specifications of these external parts.

6.3 Related Work Evaluation

We choose to compare the related work in tabular way. We start with an overview of all
solutions included in the comparison and then we present side-by-side comparison for
pairs of solutions. We include the framework presented in this thesis into the tabular
comparison in order to make it easier to directly compare to other solutions.

Identifier Title Location Focus Features

Versatile The Versatile Framework chapter 5 p. 51 delivery context, variant selection,
generic versioning framework

S1 Related Standards sec. 2.2 p. 18 delivery context

O1 WURFL sec. 2.3.1 p. 24 delivery context

O2 DELI + Capability Classes sec. 2.3.1 p. 25 delivery context

C1 Volantis Mobile Content Framework sec. 2.3.2 p.26 an end-to-end multimodal framework

C2 MobileAware Interaction Server sec. 2.3.2 p.27 an end-to-end multimodal framework

R1 Adapting multimedia Internet content
for universal access sec. 2.3.3 p.28 content adaptation, delivery context

R2 An End–End Approach to
WirelessWeb Access sec. 2.3.3 p.28 delivery context, content adaptation

R3 Enhancing pervasive Web accessibility
with rule-based adaptation strategy sec. 2.3.3 p.29 content adaptation, delivery context

R4 Device-independent web browsing
based on CC/PP and annotation sec. 2.3.3 p.30 content adaptation, delivery context

R5 Graceful Degradation: a Method for
Designing Multiplatform Graphical ... sec. 2.3.3 p.30 model-based adaptation cascaded

R6 Tool-supported single authoring for
device independence and multimodality sec. 2.3.3 p.31 abstract UI-based adaptation

R7 Context-Aware Adaptation for
Mobile Devices sec. 2.3.3 p.31 delivery context, variant selection,

content adaptation

R8 Experiences in Using CC/PP in
Context-Aware Systems sec. 2.3.3 p.32 delivery context

Table 5: Related Work Overview (focus features in order of significance)

6.3 Related Work Evaluation 83 of 95

Criteria Versatile S1 (standards)

Metadata
Consolidation

Good: allows to retrieve metadata from
multiple sources, user-defined resolution rules
for individual properties (value provider chains)

Out of scope: the framework assumes
everybody is using CC/PP for every purpose,
DELI supports legacy devices via static device

repository

Metadata
Canonicalization

Good: property mappings let the developer
to implement canonicalization rules in Java or

another language embeddable in Java

Out of scope:
raw metadata accessible

Level of
Abstraction Gap

Good: semantically rich properties can be
designed and their values derived from raw

metadata using property mappings; constraints
and preferences expressed using a high-level

query language

Out of scope:
raw metadata accessible

Domain
Expertise Issue

Moderate: in case one of the raw metadata
sources is CC/PP, the developer in charge of
implementing the value providers has to be

familiar with CC/PP and UAProf

Moderate:
requires knowledge CC/PP and UAProf

Best Practices
Enforcement

Good: separation of concerns (value provider
chains, properties, property mappings,

constraints and preferences), modularization of
inference rules into individual property

mappings, separation of actual variant selection
from the application code (resource providers)

Out of scope:
provides raw metadata retrieved from CC/PP
profile, consolidation with other sources,

canonicalization and device clustering is up to
the application developer

Table 6: Versatile versus Related Standards

Criteria O1 (WURFL) O2 (Capability Classes)

Metadata
Consolidation

Moderate: the device repository can be
extended with attributes not included in CC/PP
(UAProf), however, as the repository is static,

the profiles can not be updated to reflect the at
runtime changes (e.g. the user pressing mute

button, or changing screen orientation

Out of scope:
the framework uses CC/PP as the exclusive
source of metadata, DELI supports legacy

devices via static device repository

Metadata
Canonicalization

Good: the profiles are reviewed before
loading them into the device repository and

therefore the most common mistakes (typos,
value inconsistencies) are manually corrected

Moderate:
the rules used to define capability classes can

partially mitigate the canonicalization issue

Level of
Abstraction Gap

Moderate: in general (using WURFL API)
raw metadata are accessible, as opposed to

CC/PP (UAProf), whenever possible, the UAProf
attributes are converted to boolean to simplify
the conditions; When using WALL tag library,

the level of abstraction is raised significantly by
using WALL as an abstract user interface

language

Good:
carefully designed capability classes raise the

level of abstraction significantly

Domain
Expertise Issue

Good: the users do not need to be familiar
with CC/PP, UAProf and other

Semantic Web technologies, but needs to learn
WALL tag library instead

Moderate:
requires knowledge CC/PP and UAProf

Best Practices
Enforcement

Moderate: when using WALL tag library, the
users can focus on single authoring the

application in WALL and avoid mixing of the
versioning related code with the application;
there is no best practices enforcement when

using WURFL API directly

Moderate: due to raising the level of
abstraction, the amount of versioning code can
be much lower comparing to plain DELI, on the
other hand the framework is not aiming at best

practices enforcement

Table 7: WURFL and DELI (with Capability Classes extension)

84 of 95 6.3 Related Work Evaluation

Criteria C1 (Volantis) C2 (MobileAware)

Metadata
Consolidation

Moderate(?): the device repository can be
extended with attributes not included in CC/PP

(UAProf), the repository seems to be static
(unable to reflect the runtime changes),
the company provides repository update

subscription to its customers

Good(?): the device repository can be
extended with attributes not included in CC/PP
(UAProf); according to Figure 5 on page 27, the
framework seems to support runtime updates
of the delivery context via CC/PP and HTTP

request/session APIs

Metadata
Canonicalization

Good(?): the data stored in the device
repository are reviewed manually cleaned up

Good(?): the data stored in the device
repository are reviewed manually cleaned up

Level of
Abstraction Gap

Good(?): the framework provides XDIME
(XHTML Device-Independent Mark-Up

Extensions) abstract user interface language

Good(?): the framework uses a custom
extension of XHTML with mobility tags to let the
designer annotate content with rendering hints

and alternatives for mobile devices

Domain
Expertise Issue

Good(?) When using the abstract UI
authoring language, the designer does not need

to be familiar with CC/PP and UAProf, on the
other hand, needs to learn XDIME

Good(?): When using the abstract UI
authoring language, the designer does not need

to be familiar with CC/PP and UAProf, on the
other hand, needs to customized XHTML

Best Practices
Enforcement N/A – not enough information N/A – not enough information

Table 8: Volantis Mobile Content Framework and MobileAware MIS49

Criteria R1 (Adapting multimedia ...) R2 (An End-End Approach ...)

Metadata
Consolidation

Out of scope: as a pre-CC/PP framework, it
does define its own delivery context and does

not specify what inputs are needed to construct
instances of delivery context at runtime

Out of scope: the framework proposes to
use a pre-defined set of device classes

identified by URI stored in the CC/PP extension
header, the URI itself is used to identify the

device class

Metadata
Canonicalization

Out of scope: the framework does specify
how the delivery context is constructed Out od scope: not needed due to the above

Level of
Abstraction Gap

Good: the adaptation is driven by
InfoPyramid and the corresponding content

fidelity function – without the need to write the
adaptation (transformation) rules manually

Moderate: the level of abstraction is raised,
the problem is that it seems to be raised too

much: if a new device class is to be supported
by an application, the designer needs to

consume the implicit knowledge hidden behind
the profile URI to understand the semantics of

the device class (device capabilities)

Domain
Expertise Issue

Out od scope: as a pre CC/PP framework, it
does not depend on Semantic Web, on the

other hand, the proposed delivery context is not
sufficiently rich (from the today's perspective)

Moderate: the user does not need to fully
understand CC/PP and UAProf, only a need to
know CCPP transport layer (HTTP extensions)

Best Practices
Enforcement

Good: separation of concerns and modularity
is implied by the framework design

Good: separation of concerns and modularity
is implied by the framework design (fixed

adaptation strategy and content adaptation
using XSLT templates)

Table 9: Adapting multimedia Internet content for universal access and An End–End
Approach to WirelessWeb Access

49 The grades for the two commercial frameworks are estimates only, because the information publicly
available on company websites and in W3C position documents is not sufficient to objectively
evaluate the frameworks.

6.3 Related Work Evaluation 85 of 95

Criteria R3 (Enhancing pervasive Web ...) R4 (Device-independent web ...)

Metadata
Consolidation

Out of scope: this work represents a
delivery context as a collection of attributes,
each attribute being a controlled vocabulary

(an enumeration of possible values); the article
does not discuss how such a profile is

instantiated and what sources are needed

Out of scope:
the framework uses CC/PP as the exclusive
source of metadata, DELI supports legacy

devices via static device repository

Metadata
Canonicalization

Out of scope: this framework does not
require any canonicalization as its delivery
context is canonicalized by its definition

Moderate:
the constraints used to individual resource

variants can partially mitigate the
canonicalization issue

Level of
Abstraction Gap

Good: the enumerated values of the delivery
context are specified using high-level

abstractions, the resource annotations are using
similar approach as the delivery context, the

matching and adaptation is driven by
a declarative rule engine

Good: using structured and annotated
content together with sophisticated adaptation

algorithm sufficiently raises the level of
abstraction

Domain
Expertise Issue

Moderate: the user does not need to know
Semantic Web stack, but does need to be fairly

familiar Jess rule language

Moderate:
requires knowledge CC/PP and UAProf in order

to annotate resources

Best Practices
Enforcement

Moderate: the separation of concerns is
ensured, on the other hand, the modularity is

somewhat compromised by using a single global
rule-base which can grow extensively in

real world applications featuring more refined
delivery context (with more attributes and

attribute values)

Good: separation of versioning and
application code is achieved by using

declarative resource annotations, modularity is
ensured by using annotations on page level –
separate set of structured definitions for each

individual “screen”.

Table 10: Enhancing pervasive Web accessibility with rule-based adaptation strategy
and Device-independent web browsing based on CC/PP and annotation

Criteria R5 (Graceful Degradation ...) R6 (Tool-supported single authoring ...)

Metadata
Consolidation

Out of scope: the author introduces
Platform Model which is based on UAProf

vocabulary with a few modifications;
the article does not discuss how such a model
is instantiated and what sources are needed

 Out of scope: the framework uses a local
device profile repository which is used during
the adaptation process; however, I was not

able to find other examples than those directly
referring to pre-defined device classes

Metadata
Canonicalization

Out of scope: due to the above, the work
does not discuss the need for canonicalization

Out of scope: the to the above, it is
assumed that canonicalized data are already

stored in the repository

Level of
Abstraction Gap

Moderate: the UAProf vocabulary was
extended with arbitrary attributes (e.g.

Category of the device) which raise the level of
abstraction for pre-selected features

Moderate: the applications are first
prototyped for selected device classes and once

the designs are approved, the final version is
implemented in the UIML metalanguage and a
set of style-sheets used to generate concrete

user interface at runtime

Domain
Expertise Issue

Moderate: the work requires a good
knowledge of UML and Model Driven

Architecture, requirement for CC/PP and UAProf
knowledge is marginal, as the Platform Model is
presented in the form of an object model (UML
class diagram) rather than RDF model of triplets

Moderate: the users need to familiar with
the UIML language and the MONA development

methodology using a series of prototypes

Best Practices
Enforcement

Good: the work presents a methodology
driven by a cascade of model transformations
powered by graceful degradation (GD) rules

Good: the framework proposes a realistic
methodology of designing a series of prototypes
and then developing an abstract user interface
and separately a set of transformational style-

sheets for individual device classes

Table 11: Graceful Degradation: a Method for Designing Multiplatform Graphical
User Interfaces and Tool-supported single authoring for device independence and
multimodality

86 of 95 6.3 Related Work Evaluation

Criteria R7 (Context-Aware Adaptation ...) R8 (Experiences in Using CC/PP ...)

Metadata
Consolidation

Out of scope: the framework introduces a
custom enriched delivery context inspired by

CC/PP, but does not mention how the delivery
context instances are actually created

Out of scope: the framework introduces a
custom enriched delivery context based on

CC/PP and UAProf, but does not mention how
the individual components of the extended

delivery context instances are created

Metadata
Canonicalization

Out of scope: due to the above, it is
assumed the delivery context data are already

canonicalized

Out of scope: due to the above, it is
assumed the delivery context data are already

canonicalized

Level of
Abstraction Gap

Moderate: XQuery is used to query the
delivery context, which allows to raise the level

of abstraction modestly, the resource
annotation part and content

negotiation/adaptation parts contribute to the
favorable grade

Out of scope:
extended set of raw metadata is accessible

Domain
Expertise Issue

Moderate: the users need to be familiar with
CC/PP and partially UAProf

Moderate:
requires knowledge CC/PP and UAProf

Best Practices
Enforcement

Good: separation of concerns and
modularization are enforced by the framework

Out of scope:
provides raw metadata retrieved from

extended delivery context, device clustering is
up to the application developer

Table 12: Context-Aware Adaptation for Mobile Devices and Experiences in Using
CC/PP in Context-Aware Systems

6.3.1 Related Work Conclusion

The set of evaluation tables above attempts to evaluate the related work against the
goals set for the Versatile framework. The evaluation does not attempts to judge the
individual frameworks from the perspective of practical usability: some research work
focused on multimodal applications authoring regards the goals we use as the evaluation
criteria as marginal and simply presume some kind of delivery context to exist,
sometimes in quite a simplified form (a set of device classes). This is quite
understandable and some of the former work of the author suffers from the same issues
(2.1.2). On the contrary the work presented in this thesis is fully focused on practically
implementable solution for the acquisition, representation and manipulation of the
delivery context, as well as efficient resource variant retrieval implemented using high-
level declarative constraints and preferences. On the other hand, this work is touching
the idea of the authoring methodology only marginally (1.3).

When comparing this work to selected commercial frameworks, it is important to note
the scope of this thesis is limited versioning domain and does not introduce a concrete
end-to-end multimodal application framework. On the other hand, this work is trying to
define a generic broadly applicable framework in the form of platform agnostic
concepts – contrasted to the presented commercial frameworks, which approach the
domain of interest with solutions which are similar in many aspects, yet different
enough so that code and application portability represents a significant issue: there is
nothing like J2EE standard in the domain of multimodal computing, encouraging
application portability between the platforms of different vendors.

6.4 Current Status 87 of 95

6.4 Current Status

As a part of the framework design and evaluation, all the concepts of the framework
were implemented as Java interfaces and accompanied by detailed API documentation
[VERSAPI]. The design of individual interfaces goes down to the level of detailing all
error conditions and error handling. Implementation considerations are also a part of the
API documentation. The API is provided in the form of a pre-compiled API Java library
and is available for download on the thesis web site50. The API library was actually used
while authoring the examples used in this thesis to enforce syntax and type consistency
of throughout the examples. Implementation of the entire framework – providing
concrete implementations of all the abstract interfaces – was out of scope of the thesis
authoring effort: the API specification alone, converted to PDF, is over 100 pages and
describes in detail 45 artifacts (classes and interfaces)

50 http://dsrg.mff.cuni.cz/~gergic/versatile/

88 of 95 6.5 Alternative Applications

6.5 Alternative Applications

The case study presented at the beginning and consistently followed through the
entire thesis is the domain of multimodal web applications. Nevertheless, the
framework's principles are generic and the framework can be applied in other
application domains, whenever there is a need to semi-dynamically match and bind
requirements to provisions (e.g. a web-services runtime binding to one of a set of pre-
defined – pre-approved - services). The term semi-dynamically is used for a good
reason: as explained in section 2.4.2 Metadata Canonicalization, it is practically
impossible to trust readily available unsupervised metadata. The need to review the
metadata, develop canonicalization mappings and design hierarchical classifications
effectively disables fully automated metadata-driven service discovery and binding.
Nevertheless, a framework like Versatile becomes highly effective once the metadata
landscape has been mapped and we are dealing with the problem of sorting out the best
choice from the set of of available options.

 Appendices 89 of 95

Appendices
Index of Figures
Figure 1: A snippet of the Java locale taxonomy.. 16
Figure 2: The modality taxonomy as used in CATCH 2004... 17
Figure 3: Device Capabilities / User Preferences Technology Stack.............................. 20
Figure 4: High-level schema of the Volantis Framework (source: volantis.com)...........26
Figure 5: MobileAware - Device Recognition (source: mobileaware.com)....................27
Figure 6: MobileAware - Transcoding Process (source: mobileaware.com).................. 27
Figure 7: sources of locale setting (1) web browser, (2) application, (3) user profile.....33
Figure 8: UAProf JavaPlatform attribute values (raw sampling).................................... 34
Figure 9: UAProf JavaPlatform attribute values (after manual cleansing)......................35
Figure 10: An example of a generic ScreenSize classification hierarchy....................... 36
Figure 11: An example of a specialized ScreenSize classification hierarchy..................37
Figure 12: UAProf Keyboard attribute values (raw sampling)....................................... 38
Figure 13: A custom InputClass classification hierarchy.. 38
Figure 14: ScreenOrientation derived from ScreenSize.. 46
Figure 15: Versatile – The Key Concepts (a concept map)...52
Figure 16: DeviceMarkupClass sample taxonomy ...55
Figure 17: Versatile built-in property type hierarchy.. 57
Figure 18: Relational Operators Library..59
Figure 19: Delivery Context extending Property Registry.. 59
Figure 20: Value Provider, its abstract and concrete implementations........................... 60
Figure 21: Transformational Property Mappings.. 61
Figure 22: Query, QueryTemplate and Property Predicate... 64
Figure 23: Result Set and Resource Entry...70
Figure 24: Query Operational Semantics.. 71
Figure 25: The Versatile Scoring Function... 74
Figure 26: The Versatile Scoring Function (expanded syntax)....................................... 74
Figure 27: Resource Provider extending Property Registry.. 76

90 of 95 Appendices

Index of Tables
Table 1: Adaptation kinds, scopes and estimated number of occurrences 45
Table 2: Built-in property operators.. 66
Table 3: Semantics of PreferenceBag and PreferenceChain... 73
Table 4: Predefined scoring factors... 75
Table 5: Related Work Overview (focus features in order of significance)....................82
Table 6: Versatile versus Related Standards... 83
Table 7: WURFL and DELI (with Capability Classes extension).................................. 83
Table 8: Volantis Mobile Content Framework and MobileAware MIS..........................84
Table 9: Adapting multimedia Internet content for universal access and An End–End
Approach to WirelessWeb Access...84
Table 10: Enhancing pervasive Web accessibility with rule-based adaptation strategy
and Device-independent web browsing based on CC/PP and annotation....................... 85
Table 11: Graceful Degradation: a Method for Designing Multiplatform Graphical User
Interfaces and Tool-supported single authoring for device independence and
multimodality...85
Table 12: Context-Aware Adaptation for Mobile Devices and Experiences in Using
CC/PP in Context-Aware Systems.. 86

Index of Examples
Example 1: Mozilla Firefox 2.0 HTTP Headers Example.. 13
Example 2: Microsoft Internet Explorer 6.0 HTTP Headers Example........................... 14
Example 3: User-Agent header according to the HTTP 1.1 standard............................. 14
Example 4: An example of modality-tagged resources...17
Example 5: Hardware Platform component of Nokia N95 phone UAProf profile......... 19
Example 6: A UAProf aware XSLT stylesheet (from DELI documentation).................22
Example 7: Instantiating LayoutManager - an end-to-end example............................... 56
Example 8: User locale value provider chain example (resolution rules/fall-back)........61
Example 9: Query Template reuse, string resources, biased scoring.............................. 65
Example 10: bestMatch example using ScreenSize taxonomy....................................... 68
Example 11: bestMatch example using the UNSPSC taxonomy.................................... 68
Example 12: assertLevel and bestMatch example using the UNSPSC taxonomy.......... 69
Example 13: Scoring Function Results sorted by Φ = 0.99...75
Example 14: Scoring Function Results sorted by Φ = 0.1...76

 Appendices 91 of 95

References
[VXML03] Voice Extensible Markup Language (VoiceXML) Version 2.0, W3C
Candidate Recommendation, W3C, 20 February 2003,
http://www.w3c.org/TR/voicexml20/
[ICSM2001] V. Demesticha, J.Gergic, J.Kleindienst, M. Mast,
L.Polymenakos,H.Schulz, L.Seredi: Aspects of design and implementation of multi-
channel and multi-modal information system, Conference proceedings: ICSM 2001,
Italy, 2001
[JG99] J Gergic: A Versioning Model for SOFA/DCUP Architecture, Master's Thesis,
Charles University, 1999
[JG03] J Gergic: Towards a Versioning Model for Component-based Software
Assembly, Conference proceedings: ICSM 2003, Amsterdam, The Netherlands, 22-26
September 2003
[JG99] J Gergic: A Versioning Model for SOFA/DCUP Architecture, , Charles
University, 1999
[SA02] S. H. Maes: A "single authoring" programming model: the interaction logic,
Conference proceedings: 2002 Symposium on Applications and the Internet, Nara City,
Nara, Japan, 2002
[VERSAPI] Versatile 1.0 API Reference, API Reference, Charles University, 2007,
http:/dsrg.mff.cuni.cz/~gergic/versatile/
[MIMEMT] MIME Media Types, Specification, IANA, 2007,
http://www.iana.org/assignments/media-types/
[LC142] Locale (Java 2 Platform SE v1.4.2), Java 2 API Reference, Sun
Microsystems, 2003, http://java.sun.com/j2se/1.4.2/docs/api/java/util/Locale.html
[HTTP11] Hypertext Transfer Protocol -- HTTP/1.1, Specification, IETF, 1999,
http://www.w3.org/Protocols/rfc2616/rfc2616.html
[CATCH2004] CORDIS RTD-PROJECTS: Converse in AThens Cologne and
Helsinki 2004, Project Record, IST-1999-11103, © European Communities., 2002,
http://cordis.europa.eu/
[IIWAS2001] Yannis Despotopoulos, George Patikis, John Soldatos,
LazarosPolymenakos, Jan Kleidienst, Jaroslav Gergic: Accessing and Transforming
Dynamic Content based on XML: Alternative Techniques anda Practical
Implementation, Conference proceedings: IIWAS 2001, Linz, Sep 2001
[SEKE02] J. Gergic, J. Kleindienst, Y. Despotopoulos, J. Soldatos, G. Patikis, A.
Anagnostou, L. Polymenakos: An Approach to Lightweight Deployment of Web
Services, Conference proceedings: the 14th International Conference on Software
Engineering and Knowledge Engineering (SEKE '02), Ischia (Italy), 2002
[ICMI02] J. Kleindienst, L. Seredi, P. Kapanen, J. Bergman: CATCH-2004 multi-
modal browser: overview description with usability analysis, Conference proceedings:
Fourth IEEE International Conference on Multimodal Interfaces, Pittsburg, USA, 2002
[IWANLIS01] M. Mast, T Ross, H. Schulz, H. Harrikari, V. Demesticha, L.
Polymenakos, Y. Vamvakoulas, J. Stadermann: A Conversational Natural Language
Understanding Information System for Multiple Languages, Conference proceedings:
6th International Workshop on Applications of Natural Language to Information
Systems, Madrid, Spain, 2001
[WAP20] The WAP 2.0 conformance release, WAP Forum conformance release, Open
Mobile Alliance, 2001,
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

92 of 95 Appendices

[RB142] ResourceBundle (Java 2 Platform SE v1.4.2), Java 2 API Reference, Sun
Microsystems, 2003,
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html
[SEMWEB] Semantic Web Activity, Web Site, W3C, 2007,
http://www.w3.org/2001/sw/
[SEMWEBVIS] Berners-Lee and the Semantic Web Vision, Journal Article,
XML.com, 2000, http://www.xml.com/pub/a/2000/12/xml2000/timbl.html
[RDF04] RDF Primer, W3C Recommendation, W3C, 10 February 2004,
http://www.w3.org/TR/rdf-primer/
[CCPP04] Composite Capability/Preference Profiles (CC/PP), W3C
Recommendation, W3C, 15 January 2004, http://www.w3.org/TR/CCPP-struct-vocab/
[UAP06] OMA User Agent Profile V2.0, Approved Enabler, OMA, 6 February 2006,
http://www.openmobilealliance.org/release_program/uap_v2_0.html
[DELI] Mark H Butler: DELI: A delivery context library for CC/PP and UAProf
(Revised), Research Report, HPL-2001-260, HP Labs, 2002,
http://www.hpl.hp.com/techreports/
[JSR188] Composite Capability/Preference Profiles(CC/PP) Processing Specification,
Java Specification Request, Sun Microsystems, Inc., 2003,
http://jcp.org/en/jsr/detail?id=188
[SPARQL] SPARQL Query Language for RDF, W3C Candidate Recommendation,
W3C, 2007, http://www.w3.org/TR/rdf-sparql-query/
[XQUERY] XQuery 1.0: An XML Query Language, W3C Recommendation, W3C,
2007, http://www.w3.org/TR/xquery/
[CCPPIIFD] Mark H. Butler: CC/PP and UAProf: Issues, Improvements and Future
Directions, Research Report, HPL-2002-35, HP Labs, 2002,
http://www.hpl.hp.com/techreports/2002/HPL-2002-35.html
[SEMHYPE] Mark H Butler: Is the Semantic Web Hype?, Talk / Presentation, , HP
Labs, 2003, http://web.archive.org/web/20040427115352/
http://www.hpl.hp.com/personal/marbut/isTheSemanticWebHype.pdf
[BARRIERS] Mark H Butler: Barriers to the real world adoption of Semantic Web
technologies, Research Report, HPL-2002-333, HP Labs, 2002,
http://www.hpl.hp.com/techreports/
[IDDWG05] Input to Device Description Working Group, Position Paper, W3C, 2005,
http://lists.w3.org/Archives/Public/public-ddwg/2005Aug/att-
0005/ddwgPositionPaper.htm
[OWL04] OWL Web Ontology Language, W3C Recommendation, W3C, 10 February
2004, http://www.w3.org/TR/owl-features/
[DIDCO06] Delivery Context Overview for Device Independence, W3C Working
Group Note, W3C, 2006, http://www.w3.org/TR/di-dco/
[WURFL] Wireless Universal Resource File, Open Source Project, L Passani, A
Trasatti, 2007, http://wurfl.sourceforge.net/
[CAPCLASS] Mark H. Butler: Using capability classes to classify and match
CC/PPAnd UAProf profiles, Research Report, HPL-2002-89, HP Labs, 2002,
http://www.hpl.hp.com/techreports/
[CAPPROF] Mark H. Butler: Using Capability Profiles For Appliance Aggregation,
Research Report, HPL-2002-173 (R.1), HP Labs, 2002,
http://www.hpl.hp.com/techreports/
[VOLANTIS02] A Device-Independent Method for Web Site Authoring, Position
Paper, Volantis Systems Ltd., 2002,
http://www.w3.org/2002/07/DIAT/posn/volantis/VolantisPosition.html

 Appendices 93 of 95

[VOLANTIS07] Volantis Mobile Content Framework, Product Overview, Volantis
Systems Ltd., 2007, http://www.volantis.com/products/framework.php
[W3CMWI] Mobile Web Initiative, Web Site, W3C, 2007, http://www.w3.org/Mobile/
[W3CDIWG] Device Independence Working Group, Web Site, W3C, 2007,
http://www.w3.org/2001/di/
[W3CUWA] Ubiquitous Web Applications Working Group, Web Site, W3C, 2007,
http://www.w3.org/2007/uwa/
[MAWARE] Mobile Interaction Servier / Device Recognition, Company Web Site,
MobileAware, 2007, http://www.mobileaware.com/device_rec.jsp
[MOHAN99] Rakesh Mohan and John R. Smith and Chung-Sheng Li, Adapting
Multimedia Internet Content for Universal Access, Journal Article: IEEE Transactions
on Multimedia, Volume (1), Issue (1), Pages (104-114), 1999
[MOHAN98] Chung-Sheng Li Mohan, R. Smith, J.R.: Multimedia content
description in the InfoPyramid, Conference proceedings: 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 1998
[ESWA07] Stephen J. H. Yang, Norman W. Y. Shao, Enhancing pervasive Web
accessibility with rule-based adaptation strategy, Journal Article: Expert Systems with
Applications, Volume (32), Issue (4), Pages (1154-1167), 2007
[SCCPP01] Vladimir Korolev, Anupam Joshi: An End-End Approach to Wireless Web
Access, Conference proceedings: 21st International Conference on Distributed
Computing Systems Workshops (ICDCSW '01), Los Alamitos, CA, USA, 2001
[JESS07] Jess(R), the Rule Engine for the Java(TM) Platform, Web Site, Sandia
National Laboratories, 2007, http://www.jessrules.com/
[JSR94] Java(TM) Rule Engine API Specification 1.0, Java Specification Request, Sun
Microsystems, Inc., 2002, http://jcp.org/en/jsr/detail?id=94
[HK06] Hwe-Mo Kim, Kyong-Ho Lee, Device-independent web browsing based on
CC/PP and annotation, Journal Article: Interacting with Computers, Volume (18), Issue
(2), Pages (283-303), 2006
[FLORINS06] Murielle Florins: Graceful Degradation: a Method for Designing
Multiplatform Graphical User Interfaces, PhD Thesis, Université catholique de
Louvain, 2006
[FLORINS04] Murielle Florins and Jean Vanderdonckt: Graceful degradation of user
interfaces as a design method for multiplatform systems, Conference proceedings: 9th
international conference on Intelligent user interfaces, Funchal, Madeira,Portugal., 2004
[USIXML] UsiXML - User Interface eXtensible Markup Language, Project Web Site,
Université catholique de Louvain, Belgium, 2004-2007, http://www.usixml.org/
[TERESA04] Berti, S., Correani, F., Mori, G., Paternò, F., Santoro, C.: TERESA: a
transformation-based environment for designing and developing multi-device
interfaces, Conference proceedings: Conference on Human Factors in Computing
Systems, Vienna, Austria, 2004
[CTT00] Springer, Model-Based Design and Evaluation of Interactive Applications,
Springer, 2000
[SIMON05] R. Simon, F. Wegscheider, K. Tolar: Tool-supported single authoring for
device independence and multimodality, Conference proceedings: 7th international
conference on Human computer interaction with mobile devices & services, Salzburg,
Austria, 2005
[MONA05] L. Baillie, R. Schatz, R. Simon, H. Anegg, F. Wegscheider: Designing
Mona: User Interactions with Multimodal Mobile Applications, Conference
proceedings: 11th International Conference on Human-Computer Interaction, Las
Vegas, Nevada, USA, 2005

94 of 95 Appendices

[MONA] MONA - Mobile Multimodal Next Generation Applications:, Project Web
Site, ftw., 2007, http://mona.ftw.at/
[XFORMS] XForms 1.0, W3C Recommendation, W3C, 2006,
http://www.w3.org/TR/xforms/
[SCHATZ05] R. Schatz, R. Simon, H. Anegg, F. Wegscheider, G. Niklfeld:
Developing Mobile Multimodal Applications, Conference proceedings: HCI 2005,
Edinburgh, Scotland, 2005
[BAILLIE05] L. Baillie, R. Schatz: Exploring multimodality in the laboratory and the
field, Conference proceedings: 7th international conference on Multimodal interfaces,
Torento, Italy, 2005
[TMN04] Traetteberg, H., Molina, P. J., Nunes, N. J.: Making Model-Based UI Design
Practical: Usable and Open Methods andTools, Conference proceedings: 9th
international conference on Intelligent user interfaces, Funchal, Madeira,Portugal, 2004
[MDM04] T. Lemlouma, N. Layaïda: Context-Aware Adaptation for Mobile Devices,
Conference proceedings: 2004 IEEE International Conference on Mobile Data
Management, Berkeley, CA, USA, 2004
[SAINT03] T. Lemlouma, N. Layaïda: Adapted Content Delivery for Different
Contexts, Conference proceedings: 2003 Symposium on Applications and the Internet,
Washington, DC, USA, 2003
[UPS02] T. Lemlouma, N. Layaïda: Universal Profiling for Content Negotiation and
Adaptation in Heterogeneous Environments, Conference proceedings: W3C/INRIA:
W3C Workshop on Delivery Context, Sophia-Antipolis, France, 2002
[XSLT] XSL Transformations (XSLT), W3C Recommendation, W3C, 1999,
http://www.w3.org/TR/xslt
[Indulska03] J. Indulska and R. Robinson and A. Rakotonirainy and K. Henricksen:
Experiences in Using CC/PP in Context-Aware Systems, Conference proceedings: 4th
International Conference on Mobile Data Management (MDM), Melbourne, Australia,
2003
[UAREP1] UAProf Repository, WWW Repository, W3Development.de, 2005,
http://w3development.de/rdf/uaprof_repository/
[UAREP2] UAProf Profiles, WWW Repository, Nokia Corporation, 2007,
http://nds.nokia.com/uaprof/
[CTOS] Trading Object Service, Specification, OMG, 2000, http://www.omg.org/
[JINI] Jini Network Technology, Java Technology, Sun Microsystems, 2007,
http://www.sun.com/software/jini/
[UDDI] UDDI Version 3.0.2, Oasis Committee Draft, OASIS, 2004,
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm
[JSF] JavaServer Faces Technology, Java Technology, Sun Microsystems, Inc., 2007,
http://java.sun.com/javaee/javaserverfaces/
[ODM06] Ontology Definition Metamodel, Recommended for Adoption, OMG, 5 June
2006, http://www.omg.org/ontology/
[FCA] Formal concept analysis, Encyclopedia entry, Wikipedia, The Free
Encyclopedia, 2007, http://en.wikipedia.org/wiki/Formal_concept_analysis
[LATORD] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, 1990
[CONAL] G. Snelting: Concept analysis-a new framework for program
understanding, Conference proceedings: SIGPLAN/SIGSOFT Workshop on Program
Analysis For SoftwareTools and Engineering, Montreal, Canada, July 1998

 Appendices 95 of 95

[LATEO] F. J. Oles., An application of lattice theory to knowledge representation,
Journal Article: Theoretical Computer Science, Volume (249), Issue (1), Pages (163-
196), 2000
[PA20020198719] Gergic Jaroslav, Hosn Rafah A., Kleindienst Jan, Maes Stephane
H., Raman Thiruvilwamalai V., Sedivy Jan, Seredi Ladislav, Reusable voiceXML
dialog components, subdialogs and beans, United States Patent Application
#20020198719, U.S. Patent & Trademark Office, 2002
[PA20030046316] Gergic Jaroslav, Kleindienst Jan, Maes Stephane H., Raman
Thiruvilwamalai V., Sedivy Jan, Systems and methods for providing conversational
computing via javaserver pages and javabeans, United States Patent Application
#20030046316, U.S. Patent & Trademark Office, 2003
[PA20060036770] Hosn Rafah A., Gergic Jaroslav, Ling Nai Keung Thomas, Wiecha
Charles, System for factoring synchronization strategies from multimodal programming
model runtimes, United States Patent Application #20060036770, U.S. Patent &
Trademark Office, 2006
[DMSP] Distributed Multimodal Synchronization Protocol, Internet-Draft, Internet
Engineering Task Force, 2005-2007, http://www.ietf.org/internet-drafts/draft-engelsma-
dmsp-04.txt
[CMAP06] J. D Novak & A. J. Cañas: The Theory Underlying Concept Maps and
How to Construct Them, Technical Report, 2006-01, Florida Institute for Human and
Machine Cognition, 2006,
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryCmaps/
[CMAP04] A. J. Cañas, G. Hill, R. Carff, N. Suri, J. Lott, T. Eskridge, G. Gómez, M.
Arroyo, R. Carvajal: CmapTools: A Knowledge Modeling and Sharing Environment,
Conference proceedings: First International Conference on Concept Mapping,
Pamplona, Spain, 2004

	1Introduction
	1.1Application Domain
	1.2Versioning Domain
	1.3Usage Domain
	1.4Thesis Contributions
	1.5Structure of the Thesis

	2Background
	2.1Case Studies
	2.1.1Content Adaptation Legacy and Reality
	2.1.2CATCH 2004

	2.2Related Standards
	2.2.1CC/PP and UAProf
	2.2.2DELI and CC/PP Processing Specification
	2.2.3Standards Stack Evaluation

	2.3Related Work
	2.3.1Open Source Frameworks
	WURFL
	Capability Classes

	2.3.2Commercial Frameworks
	Volantis Mobile Content Framework™
	MobileAware Interaction Server

	2.3.3Related Research
	Adapting multimedia Internet content for universal access
	An End–End Approach to WirelessWeb Access
	Enhancing pervasive Web accessibility with rule-based adaptation strategy
	Device-independent web browsing based on CC/PP and annotation
	Graceful Degradation:
 a Method for Designing Multiplatform Graphical User Interfaces
	Tool-supported single authoring for device independence and multimodality
	Context-Aware Adaptation for Mobile Devices
	Experiences in Using CC/PP in Context-Aware Systems

	2.4Important Observations
	2.4.1Metadata Consolidation
	2.4.2Metadata Canonicalization
	2.4.3Metadata versus Knowledge

	2.5Background Conclusion

	3Setting the Goals
	4Addressing the Goals
	4.1Design Considerations
	4.1.1Functional Considerations
	4.1.2Technical Considerations

	4.2Possible Approaches
	4.2.1Web Ontology Language
	4.2.2Rule-Based Systems
	4.2.3Ontology Definition Metamodel
	4.2.4Concept Analysis

	4.3Design Conclusion

	5The Versatile Framework
	5.1The Elevator Pitch
	5.2Conceptual Overview
	5.3Technical Overview
	5.4Versatile Properties
	Relational Operators

	5.5Delivery Context and Value Provider
	Delivery Context
	Value Provider

	5.6Property Mappings
	5.7Query and Query Template
	5.7.1Property Predicate and Property Operator
	5.7.2Result Set and Resource Entry
	5.7.3Query Semantics
	5.7.4The Scoring Function
	5.7.5Resource Provider

	6Conclusion
	6.1Overview
	6.2Goals Evaluation
	6.2.1Functional Aspects Evaluation
	6.2.2Technical Aspects Evaluation

	6.3Related Work Evaluation
	6.3.1Related Work Conclusion

	6.4Current Status
	6.5Alternative Applications

	Appendices

